IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3191-d373832.html
   My bibliography  Save this article

Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks

Author

Listed:
  • Ram Machlev

    (The Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel)

  • Zohar Batushansky

    (Israel Electric Corporation and the Department of Electrical Engineering, Ariel University, Ariel 40700, Israel)

  • Sachin Soni

    (First Solar, Inc., Tempe, AZ 85281, USA)

  • Vladimir Chadliev

    (First Solar, Inc., Tempe, AZ 85281, USA)

  • Juri Belikov

    (Department of Software Science, Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia)

  • Yoash Levron

    (The Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel)

Abstract

In recent years, there has been a growing need for accurate models that describe the dynamics of renewable energy sources, especially photovoltaic sources and wind turbines. In light of this gap, this work focuses on the validation of standard dynamic models developed by the Western Electricity Coordinating Council (WECC), using actual measurements from the Western Texas and Southern California transmission networks. The tests are based on the North American Electric Reliability Corporation compliance standards and include dynamic stability tests for volt-varcontrol and primary frequency response. Through an extensive set of field tests, we show that the WECC generic models can be used to simulate real dynamic phenomena in large-scale solar photovoltaic power plants, and we propose guidelines for correct usage of these models. The results show that the WECC models are especially accurate when the photovoltaic system is connected with a low impedance to the main network. We also show that the tested WECC models successfully predict the frequency response of an actual grid event that occurred in the Electric Reliability Council of Texas and which resulted in a loss of nearly 1.365 GW. This result supports the use of these models in the study of large-scale dynamic phenomena that include renewable energy sources.

Suggested Citation

  • Ram Machlev & Zohar Batushansky & Sachin Soni & Vladimir Chadliev & Juri Belikov & Yoash Levron, 2020. "Verification of Utility-Scale Solar Photovoltaic Plant Models for Dynamic Studies of Transmission Networks," Energies, MDPI, vol. 13(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3191-:d:373832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    2. Shah, Rakibuzzaman & Mithulananthan, N. & Bansal, R.C. & Ramachandaramurthy, V.K., 2015. "A review of key power system stability challenges for large-scale PV integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1423-1436.
    3. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nien-Che Yang & Chun-Wei Hsu & Abhilash Sen, 2023. "Parameter Tuning for WECC Generic Photovoltaic System Models Using Latin Hypercube Sampling and Pareto Optimality," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    2. Olga Poliak & Doron Shmilovitz, 2023. "Power Reserve from Photovoltaics for Improving Frequency Response in the Isolated System," Energies, MDPI, vol. 16(8), pages 1-20, April.
    3. Tariq Muneer & Mehreen Saleem Gul & Marzia Alam, 2022. "Modelling of a Large Solar PV Facility: England’s Mallard Solar Farm Case Study," Energies, MDPI, vol. 15(22), pages 1-17, November.
    4. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    3. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    4. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    5. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    6. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    7. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    9. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.
    10. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    11. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    12. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    13. Jose Rueda Torres & Zameer Ahmad & Nidarshan Veera Kumar & Elyas Rakhshani & Ebrahim Adabi & Peter Palensky & Mart van der Meijden, 2021. "Power Hardware-in-the-Loop-Based Performance Analysis of Different Converter Controllers for Fast Active Power Regulation in Low-Inertia Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, June.
    14. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    15. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.
    16. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    17. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    18. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    19. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3191-:d:373832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.