IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7798-d848625.html
   My bibliography  Save this article

Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power

Author

Listed:
  • Junfeng Qi

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Fei Tang

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Jiarui Xie

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xinang Li

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Xiaoqing Wei

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Zhuo Liu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

Renewable energy units led by wind power participate in diversified control primary frequency modulation, making the frequency response modes and the setting of frequency modulation parameters more complex. This paper proposes a frequency response model of the power system which is highly penetrated by wind power based on the two mainstream control strategies of wind power that participate in primary frequency modulation. The model considers the influence of wind capture devices, maximum power point tracking (MPPT), and other complex control strategies on system frequency response. Based on this model, the calculation formulas of the maximum change rate of dynamic frequency, the lowest point of dynamic frequency, and the maximum steady-state frequency deviation of the system after fault disturbance are derived in the frequency domain. The influences of wind power permeability and two typical frequency response control strategies on system frequency stability are analyzed. On the one hand, it is found that the proposed model can fit the system frequency response better than the traditional system frequency response model. Beyond that, two control strategies are mainly aimed at the different frequency stability requirements. On the other hand, under the condition of meeting the system’s stability requirements, the paper calculates the control parameters of frequency response of the doubly-fed induction generator (DFIG). The time-domain simulation model of the improved IEEE three-machine nine-node system and IEEE 39-node system with high permeability of wind power are built. Through the different fault scenarios, the simulation results verify the effectiveness of the proposed model and the accuracy of control strategy parameter calculation.

Suggested Citation

  • Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7798-:d:848625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    2. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    3. Benxi Hu & Fei Tang & Dichen Liu & Yu Li & Xiaoqing Wei, 2021. "A Wind-Storage Combined Frequency Regulation Control Strategy Based on Improved Torque Limit Control," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    4. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    2. Martínez – Lucas, Guillermo & Sarasua, José Ignacio & Fernández – Guillamón, Ana & Molina – García, Ángel, 2021. "Combined hydro-wind frequency control scheme: Modal analysis and isolated power system case example," Renewable Energy, Elsevier, vol. 180(C), pages 1056-1072.
    3. Heylen, Evelyn & Teng, Fei & Strbac, Goran, 2021. "Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Ratnam, Kamala Sarojini & Palanisamy, K. & Yang, Guangya, 2020. "Future low-inertia power systems: Requirements, issues, and solutions - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    8. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Ki Ryong Kim & Sangjung Lee & Jong-Pil Lee & Jaesik Kang, 2021. "An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    11. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    12. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    13. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    14. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    15. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    16. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.
    17. Mariano G. Ippolito & Fabio Massaro & Rossano Musca & Gaetano Zizzo, 2021. "An Original Control Strategy of Storage Systems for the Frequency Stability of Autonomous Grids with Renewable Power Generation," Energies, MDPI, vol. 14(15), pages 1-22, July.
    18. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    19. José Calixto Lopes & Thales Sousa, 2022. "Transmission System Electromechanical Stability Analysis with High Penetration of Renewable Generation and Battery Energy Storage System Application," Energies, MDPI, vol. 15(6), pages 1-23, March.
    20. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7798-:d:848625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.