IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp861-875.html
   My bibliography  Save this article

Strategic land use analysis for solar energy development in New York State

Author

Listed:
  • Katkar, Venktesh V.
  • Sward, Jeffrey A.
  • Worsley, Alex
  • Zhang, K. Max

Abstract

This study investigates the spatial characteristics of existing utility-scale solar energy (USSE) development in New York State (NYS) and assesses the land-suitability for the future development of USSE needed to achieve the State’s renewable energy goals using GIS-MCDA techniques. Slope, proximity to electric substations, protected lands, and soil quality were used as criteria to develop land suitability scenarios. 40% of present USSE capacity has been developed on agricultural lands, and 84% of identified land suitable for future USSE development (∼140 GW potential) is agricultural. The USSE potential on non-agricultural land is 22.5 GW – just sufficient to accommodate the development of 21.6 GW, which is the estimated USSE capacity that will be required to achieve NYS’s 2030 goal of 70% renewable electricity. Thus, agricultural lands will be the prime target for future USSE development. Exploring the state-specific synergies for solar-agriculture colocation, preventing the spatially-concentrated development of USSE, and incentivizing the use of unproductive agricultural lands will help mitigate negative impacts of USSE development on agricultural lands.

Suggested Citation

  • Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:861-875
    DOI: 10.1016/j.renene.2021.03.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doorga, Jay R.S. & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius," Renewable Energy, Elsevier, vol. 133(C), pages 1201-1219.
    2. Hitaj, Claudia & Suttles, Shellye, 2016. "Trends in U.S. Agriculture's Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass," Economic Information Bulletin 262140, United States Department of Agriculture, Economic Research Service.
    3. Anwarzai, Mohammad Abed & Nagasaka, Ken, 2017. "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 150-160.
    4. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    5. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    6. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    7. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    8. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    9. Jun, Dong & Tian-tian, Feng & Yi-sheng, Yang & Yu, Ma, 2014. "Macro-site selection of wind/solar hybrid power station based on ELECTRE-II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 194-204.
    10. Brewer, Justin & Ames, Daniel P. & Solan, David & Lee, Randy & Carlisle, Juliet, 2015. "Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability," Renewable Energy, Elsevier, vol. 81(C), pages 825-836.
    11. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    12. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    13. Sward, Jeffrey A. & Siff, Jackson & Gu, Jiajun & Zhang, K. Max, 2019. "Strategic planning for utility-scale solar photovoltaic development – Historical peak events revisited," Applied Energy, Elsevier, vol. 250(C), pages 1292-1301.
    14. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    15. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    16. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    17. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    18. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    19. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    20. Shiraishi, Kenji & Shirley, Rebekah G. & Kammen, Daniel M., 2019. "Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh," Applied Energy, Elsevier, vol. 235(C), pages 1457-1467.
    21. Deshmukh, Ranjit & Wu, Grace C. & Callaway, Duncan S. & Phadke, Amol, 2019. "Geospatial and techno-economic analysis of wind and solar resources in India," Renewable Energy, Elsevier, vol. 134(C), pages 947-960.
    22. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    23. Carlisle, Juliet E. & Kane, Stephanie L. & Solan, David & Bowman, Madelaine & Joe, Jeffrey C., 2015. "Public attitudes regarding large-scale solar energy development in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 835-847.
    24. Sánchez-Lozano, Juan M. & Henggeler Antunes, Carlos & García-Cascales, M. Socorro & Dias, Luis C., 2014. "GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain," Renewable Energy, Elsevier, vol. 66(C), pages 478-494.
    25. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Williams, Henry J. & Hashad, Khaled & Wang, Haomiao & Max Zhang, K., 2023. "The potential for agrivoltaics to enhance solar farm cooling," Applied Energy, Elsevier, vol. 332(C).
    2. Costa, Alberto & Ng, Tsan Sheng & Su, Bin, 2023. "Long-term solar PV planning: An economic-driven robust optimization approach," Applied Energy, Elsevier, vol. 335(C).
    3. Elmallah, Salma & Hoen, Ben & Fujita, K. Sydny & Robson, Dana & Brunner, Eric, 2023. "Shedding light on large-scale solar impacts: An analysis of property values and proximity to photovoltaics across six U.S. states," Energy Policy, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    2. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    3. Pojadas, Dave J. & Abundo, Michael Lochinvar S., 2022. "A spatial cost-benefit-externality modelling framework for siting of variable renewable energy farms: A case in Bohol, Philippines," Renewable Energy, Elsevier, vol. 181(C), pages 1177-1187.
    4. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    5. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    6. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    7. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    11. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    12. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    13. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    14. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    15. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    16. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    17. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    18. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    19. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).
    20. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:861-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.