IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p143-d470061.html
   My bibliography  Save this article

Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment

Author

Listed:
  • Morice R. O. Odhiambo

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Adnan Abbas

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Xiaochan Wang

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    Jiangsu Province Engineering Lab for Modern Intelligent Facilities of Agriculture Technology & Equipment, Nanjing 210031, China)

  • Gladys Mutinda

    (College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China)

Abstract

Decarbonization of electrical power generation is an essential necessity in the reduction of carbon emissions, mitigating climate change and attaining sustainable development. Solar energy as a substitution for fossil fuel-based energy sources has the potential to aid in realizing this sustainable future. This research performs a geographic information systems (GIS)-based assessment of the solar energy potential in the Yangtze River Delta region (YRDR) of China using high-resolution solar radiation data combined with geographical, social, environmental and cultural constraints data. The solar energy potential is evaluated from the geographical and technical perspective, and the results reveal that the YRDR is endowed with rich solar energy resources, with the geographical potential in the suitable areas ranging from 1446 kWh/m 2 to 1658 kWh/m 2 . It is also estimated that the maximum solar capacity potential could be up to 4140.5 GW, illustrating the high potential available for future capacity development in this region. Realizing this significant potential as an alternative for fossil fuel-based electricity generation would result in a substantial mitigation of CO 2 emissions in this region, where air pollution is severe. Potential evaluations found that Jiangsu and Anhui provinces provide the most optimal areas for the development of solar photovoltaics (PV) installations, as they have the highest geographical and technological solar energy potential. Further, findings of the case study undertaken at a solar PV plant show disparities between actual generated power and technical solar potential, highlighting the significance of utilizing solar radiation data from local ground-based meteorological stations. This study provides policy makers and potential investors with information on solar energy potential in the Yangtze River Delta region that would contribute to solar power generation development.

Suggested Citation

  • Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:143-:d:470061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    2. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    3. Doorga, Jay R.S. & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius," Renewable Energy, Elsevier, vol. 133(C), pages 1201-1219.
    4. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Jiawei Wu & Yehua Dennis Wei & Qizhai Li & Feng Yuan, 2018. "Economic Transition and Changing Location of Manufacturing Industry in China: A Study of the Yangtze River Delta," Sustainability, MDPI, vol. 10(8), pages 1-28, July.
    6. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    7. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    8. Anwarzai, Mohammad Abed & Nagasaka, Ken, 2017. "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 150-160.
    9. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    10. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    11. Mani, Monto & Pillai, Rohit, 2010. "Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3124-3131, December.
    12. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Lee, Wei-De & Huang, Angela & Xu, Chong-Yu & Guo, Shenglian, 2020. "An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies," Applied Energy, Elsevier, vol. 275(C).
    13. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    14. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    15. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    16. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    17. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
    18. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    19. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    20. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    21. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    22. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    23. Clifton, Julian & Boruff, Bryan J., 2010. "Assessing the potential for concentrated solar power development in rural Australia," Energy Policy, Elsevier, vol. 38(9), pages 5272-5280, September.
    24. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    25. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    26. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    27. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yechennan Peng & Hossein Azadi & Liang (Emlyn) Yang & Jürgen Scheffran & Ping Jiang, 2022. "Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.
    2. Alfeus Sunarso & Kunhali Ibrahim-Bathis & Sakti A. Murti & Irwan Budiarto & Harold S. Ruiz, 2020. "GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province," Sustainability, MDPI, vol. 12(15), pages 1-12, August.
    3. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    4. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    5. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    6. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    7. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    8. Manoj Kumar, Nallapaneni & Chopra, Shauhrat S., 2023. "Integrated techno-economic and life cycle assessment of shared circular business model based blockchain-enabled dynamic grapevoltaic farm for major grape growing states in India," Renewable Energy, Elsevier, vol. 209(C), pages 365-381.
    9. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    10. Giamalaki, Marina & Tsoutsos, Theocharis, 2019. "Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach," Renewable Energy, Elsevier, vol. 141(C), pages 64-75.
    11. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).
    12. Adam Juma Abdallah Gudo & Marye Belete & Ghali Abdullahi Abubakar & Jinsong Deng, 2020. "Spatio-Temporal Analysis of Solar Energy Potential for Domestic and Agricultural Utilization to Diminish Poverty in Jubek State, South Sudan, Africa," Energies, MDPI, vol. 13(6), pages 1-22, March.
    13. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    14. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    15. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    16. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    17. Pojadas, Dave J. & Abundo, Michael Lochinvar S., 2022. "A spatial cost-benefit-externality modelling framework for siting of variable renewable energy farms: A case in Bohol, Philippines," Renewable Energy, Elsevier, vol. 181(C), pages 1177-1187.
    18. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2022. "Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality," Renewable Energy, Elsevier, vol. 197(C), pages 138-150.
    19. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    20. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:143-:d:470061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.