Short-term forecasting of global solar irradiance in tropical environments with incomplete data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118192
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Islam, M.D. & Kubo, I. & Ohadi, M. & Alili, A.A., 2009. "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 86(4), pages 511-515, April.
- Lima, Francisco J.L. & Martins, Fernando R. & Pereira, Enio B. & Lorenz, Elke & Heinemann, Detlev, 2016. "Forecast for surface solar irradiance at the Brazilian Northeastern region using NWP model and artificial neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 807-818.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
- Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
- Mehmood, Faiza & Ghani, Muhammad Usman & Asim, Muhammad Nabeel & Shahzadi, Rehab & Mehmood, Aamir & Mahmood, Waqar, 2021. "MPF-Net: A computational multi-regional solar power forecasting framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
- Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
- Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.
- Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
- Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
- Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
- Wu, Ji & Chan, Chee Keong & Zhang, Yu & Xiong, Bin Yu & Zhang, Qing Hai, 2014. "Prediction of solar radiation with genetic approach combing multi-model framework," Renewable Energy, Elsevier, vol. 66(C), pages 132-139.
- Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
- Rivero, M. & Orozco, S. & Sellschopp, F.S. & Loera-Palomo, R., 2017. "A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico," Renewable Energy, Elsevier, vol. 114(PB), pages 1340-1352.
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
- Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
- Charlier, Dorothée & Legendre, Bérangère & Ricci, Olivia, 2021. "Measuring fuel poverty in tropical territories: A latent class model," World Development, Elsevier, vol. 140(C).
- Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
- Dorvlo, Atsu S. S. & Jervase, Joseph A. & Al-Lawati, Ali, 2002. "Solar radiation estimation using artificial neural networks," Applied Energy, Elsevier, vol. 71(4), pages 307-319, April.
- Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
- Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
- Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).
- Benalcazar, Pablo & Kalka, Maciej & Kamiński, Jacek, 2024. "From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems," Energy Policy, Elsevier, vol. 191(C).
- Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
- Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
- Bisoi, Ranjeeta & Dash, Deepak Ranjan & Dash, P.K. & Tripathy, Lokanath, 2022. "An efficient robust optimized functional link broad learning system for solar irradiance prediction," Applied Energy, Elsevier, vol. 319(C).
- Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
- Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
- Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
- Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
- Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
- Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
- Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
- Polasek, Tomas & Čadík, Martin, 2023. "Predicting photovoltaic power production using high-uncertainty weather forecasts," Applied Energy, Elsevier, vol. 339(C).
- Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
- Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
- Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
- Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
More about this item
Keywords
Solar forecasting; Clear sky index; Artificial neural network; Long Short-Term Memory; ARIMA; Imputation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.