IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p399-d1569612.html
   My bibliography  Save this article

A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction

Author

Listed:
  • Zhu Liu

    (China Southern Power Grid Research Technology Co., Ltd., Guangzhou 510663, China)

  • Lingfeng Xuan

    (Qingyuan Yingde Power Supply Bureau, Guangdong Electric Power Co., Ltd., Yingde 513000, China)

  • Dehuang Gong

    (Qingyuan Yingde Power Supply Bureau, Guangdong Electric Power Co., Ltd., Yingde 513000, China)

  • Xinlin Xie

    (Qingyuan Yingde Power Supply Bureau, Guangdong Electric Power Co., Ltd., Yingde 513000, China)

  • Dongguo Zhou

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

To address the challenges of the issue of inaccurate prediction results due to missing data in PV power records, a photovoltaic power data imputation method based on a Wasserstein Generative Adversarial Network (WGAN) and Long Short-Term Memory (LSTM) network is proposed. This method introduces a data-driven GAN framework with quasi-convex characteristics to ensure the smoothness of the imputed data with the existing data and employs a gradient penalty mechanism and a single-batch multi-iteration strategy for stable training. Finally, through frequency domain analysis, t-Distributed Stochastic Neighbor Embedding (t-SNE) metrics, and prediction performance validation of the generated data, the proposed method can improve the continuity and reliability of data in photovoltaic prediction tasks.

Suggested Citation

  • Zhu Liu & Lingfeng Xuan & Dehuang Gong & Xinlin Xie & Dongguo Zhou, 2025. "A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction," Energies, MDPI, vol. 18(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:399-:d:1569612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
    2. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    3. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    4. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    5. Peng, Tian & Song, Shihao & Suo, Leiming & Wang, Yuhan & Nazir, Muhammad Shahzad & Zhang, Chu, 2024. "Research and application of a novel graph convolutional RVFL and evolutionary equilibrium optimizer algorithm considering spatial factors in ultra-short-term solar power prediction," Energy, Elsevier, vol. 308(C).
    6. Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Di Leo & Alessandro Ciocia & Gabriele Malgaroli & Filippo Spertino, 2025. "Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu Liu & Lingfeng Xuan & Dehuang Gong & Xinlin Xie & Zhongwen Liang & Dongguo Zhou, 2025. "A WGAN-GP Approach for Data Imputation in Photovoltaic Power Prediction," Energies, MDPI, vol. 18(5), pages 1-16, February.
    2. Al-Dahidi, Sameer & Alrbai, Mohammad & Rinchi, Bilal & Alahmer, Hussein & Al-Ghussain, Loiy & Hayajneh, Hassan S. & Alahmer, Ali, 2025. "Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models," Energy, Elsevier, vol. 323(C).
    3. Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2025. "A correction framework for day-ahead NWP solar irradiance forecast based on sparsely activated multivariate-shapelets information aggregation," Renewable Energy, Elsevier, vol. 244(C).
    4. Zang, Haixiang & Li, Wenan & Cheng, Lilin & Liu, Jingxuan & Wei, Zhinong & Sun, Guoqiang, 2025. "Short-term multi-site solar irradiance prediction with dynamic-graph-convolution-based spatial-temporal correlation capturing," Renewable Energy, Elsevier, vol. 246(C).
    5. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    6. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    7. Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    8. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    9. Hategan, Sergiu-Mihai & Stefu, Nicoleta & Petreus, Dorin & Szilagyi, Eniko & Patarau, Toma & Paulescu, Marius, 2025. "Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches," Energy, Elsevier, vol. 316(C).
    10. Abad-Alcaraz, V. & Castilla, M. & Carballo, J.A. & Bonilla, J. & Álvarez, J.D., 2025. "Multimodal deep learning for solar radiation forecasting," Applied Energy, Elsevier, vol. 393(C).
    11. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    12. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    13. Rizk M Rizk-Allah & Lobna M Abouelmagd & Ashraf Darwish & Vaclav Snasel & Aboul Ella Hassanien, 2024. "Explainable AI and optimized solar power generation forecasting model based on environmental conditions," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-33, October.
    14. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Jadin, Mohd Shawal & Saari, Mohd Mawardi, 2025. "Hierarchical power output prediction for floating photovoltaic systems," Energy, Elsevier, vol. 323(C).
    15. Yeom, Jong-Min & Deo, Ravinesh C. & Adamwoski, Jan F. & Chae, Taebyeong & Kim, Dong-Su & Han, Kyung-Soo & Kim, Do-Yong, 2020. "Exploring solar and wind energy resources in North Korea with COMS MI geostationary satellite data coupled with numerical weather prediction reanalysis variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Li, Jiaqian & Rao, Congjun & Gao, Mingyun & Xiao, Xinping & Goh, Mark, 2025. "Efficient calculation of distributed photovoltaic power generation power prediction via deep learning," Renewable Energy, Elsevier, vol. 246(C).
    17. Gong, Jianqiang & Qu, Zhiguo & Zhu, Zhenle & Xu, Hongtao, 2025. "Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning," Energy, Elsevier, vol. 320(C).
    18. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    19. Zhang, Yandi, 2025. "Enhancing solar irradiance prediction for sustainable energy solutions employing a hybrid machine learning model; improving hydrogen production through Photoelectrochemical device," Applied Energy, Elsevier, vol. 382(C).
    20. Chuanjie Xie & Chong Huang & Deqiang Zhang & Wei He, 2021. "BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data," IJERPH, MDPI, vol. 18(19), pages 1-12, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:399-:d:1569612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.