A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
- Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
- Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
- Peng, Tian & Song, Shihao & Suo, Leiming & Wang, Yuhan & Nazir, Muhammad Shahzad & Zhang, Chu, 2024. "Research and application of a novel graph convolutional RVFL and evolutionary equilibrium optimizer algorithm considering spatial factors in ultra-short-term solar power prediction," Energy, Elsevier, vol. 308(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paolo Di Leo & Alessandro Ciocia & Gabriele Malgaroli & Filippo Spertino, 2025. "Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-28, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu Liu & Lingfeng Xuan & Dehuang Gong & Xinlin Xie & Zhongwen Liang & Dongguo Zhou, 2025. "A WGAN-GP Approach for Data Imputation in Photovoltaic Power Prediction," Energies, MDPI, vol. 18(5), pages 1-16, February.
- Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2025. "A correction framework for day-ahead NWP solar irradiance forecast based on sparsely activated multivariate-shapelets information aggregation," Renewable Energy, Elsevier, vol. 244(C).
- Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
- Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
- Hategan, Sergiu-Mihai & Stefu, Nicoleta & Petreus, Dorin & Szilagyi, Eniko & Patarau, Toma & Paulescu, Marius, 2025. "Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches," Energy, Elsevier, vol. 316(C).
- Rizk M Rizk-Allah & Lobna M Abouelmagd & Ashraf Darwish & Vaclav Snasel & Aboul Ella Hassanien, 2024. "Explainable AI and optimized solar power generation forecasting model based on environmental conditions," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-33, October.
- Gong, Jianqiang & Qu, Zhiguo & Zhu, Zhenle & Xu, Hongtao, 2025. "Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning," Energy, Elsevier, vol. 320(C).
- Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
- Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Missing data imputation using mixture factor analysis for building electric load data," Applied Energy, Elsevier, vol. 304(C).
- Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
- Wang, Zheng & Peng, Tian & Zhang, Xuedong & Chen, Jialei & Qian, Shijie & Zhang, Chu, 2025. "Enhancing multi-step short-term solar radiation forecasting based on optimized generalized regularized extreme learning machine and multi-scale Gaussian data augmentation technique," Applied Energy, Elsevier, vol. 377(PD).
- Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
- Robert Basmadjian & Amirhossein Shaafieyoun & Sahib Julka, 2021. "Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Benalcazar, Pablo & Kalka, Maciej & Kamiński, Jacek, 2024. "From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems," Energy Policy, Elsevier, vol. 191(C).
- Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
- Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
- Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
- Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
- Yeom, Jong-Min & Deo, Ravinesh C. & Adamwoski, Jan F. & Chae, Taebyeong & Kim, Dong-Su & Han, Kyung-Soo & Kim, Do-Yong, 2020. "Exploring solar and wind energy resources in North Korea with COMS MI geostationary satellite data coupled with numerical weather prediction reanalysis variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Zhang, Yandi, 2025. "Enhancing solar irradiance prediction for sustainable energy solutions employing a hybrid machine learning model; improving hydrogen production through Photoelectrochemical device," Applied Energy, Elsevier, vol. 382(C).
More about this item
Keywords
PV output prediction; data imputation; GAN; LSTM; gradient penalty mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:399-:d:1569612. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.