Author
Listed:
- Sulaiman, Mohd Herwan
- Mustaffa, Zuriani
- Jadin, Mohd Shawal
- Saari, Mohd Mawardi
Abstract
Accurate forecasting of power output in Floating Photovoltaic (FPV) systems is essential for optimizing renewable energy generation and improving energy management strategies. This study introduces a novel hierarchical prediction framework that enhances FPV power forecasting by systematically modeling energy output at three levels: (1) Maximum Power Point Tracking (MPPT) level, (2) phase-wise level, and (3) total system level. This structured approach captures the interdependencies between different operational levels, improving both prediction accuracy and interpretability. A high-resolution dataset, spanning one year with 5-min interval measurements, was collected from an operational FPV system at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) and used for model training and validation. The dataset comprises meteorological parameters (solar irradiation, ambient temperature) and electrical characteristics (MPPT voltage, current, and phase-wise power output). Five machine learning models—Feedforward Neural Network (FFNN), Random Forest (RF), Extreme Learning Machine (ELM), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost)—were evaluated within the hierarchical framework. Results indicate that FFNN outperforms all other models, achieving an RMSE of 0.0125, MAE of 0.0024, and an R2 of 1 at the system level. The hierarchical structure improves predictive robustness, reduces error propagation across levels, and enhances real-time monitoring by facilitating localized performance analysis. This framework offers a scalable and adaptable solution for FPV forecasting, contributing to enhanced grid stability and more effective energy management. The findings demonstrate the practical benefits of hierarchical modeling in renewable energy prediction, providing a foundation for future research into adaptive forecasting models for dynamic environmental conditions.
Suggested Citation
Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Jadin, Mohd Shawal & Saari, Mohd Mawardi, 2025.
"Hierarchical power output prediction for floating photovoltaic systems,"
Energy, Elsevier, vol. 323(C).
Handle:
RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015257
DOI: 10.1016/j.energy.2025.135883
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015257. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.