IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002373.html
   My bibliography  Save this article

Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches

Author

Listed:
  • Hategan, Sergiu-Mihai
  • Stefu, Nicoleta
  • Petreus, Dorin
  • Szilagyi, Eniko
  • Patarau, Toma
  • Paulescu, Marius

Abstract

Nowadays, the balance of the electricity grid is threatened by the increasing penetration of solar sources, whose inherent variability can cause a significant fluctuation of energy in the grid. Nowcasting of the output power of photovoltaic (PV) plants has become a central task for intelligent power grid management. This study aims to increase the performance of intra-hour PV power forecasts. For this, a new weighted ensemble model is proposed, that dynamically aggregates machine learning and models based on sky images. Incorporating physical information from direct sky observation into the algorithms is intended to reduce persistence, an intrinsic limitation of statistical forecasting models. The study is carried out with high-quality radiometric data and high-resolution sky images recorded on the Solar Platform of the West University of Timișoara, Romania. The overall results show that the proposed ensemble achieves a significantly higher skill score over persistence than the individual models, and a moderate precision, suggesting that a weighted ensemble penalizes large errors at the cost of average precision. Improvements in nowcasted PV power are notable at longer forecast horizons (longer than 15 min) and for periods of high-variability in the state-of-the-sky, scenarios where traditional approaches fail.

Suggested Citation

  • Hategan, Sergiu-Mihai & Stefu, Nicoleta & Petreus, Dorin & Szilagyi, Eniko & Patarau, Toma & Paulescu, Marius, 2025. "Short-term forecasting of PV power based on aggregated machine learning and sky imagery approaches," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002373
    DOI: 10.1016/j.energy.2025.134595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Nan & Zhang, Yumeng & Duan, Liqiang & Hou, Hongjuan & Zhang, Hanfei & Zhou, Yong & Bao, Weiwei, 2023. "Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study," Energy, Elsevier, vol. 284(C).
    2. Paulescu, Marius & Blaga, Robert & Dughir, Ciprian & Stefu, Nicoleta & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2023. "Intra-hour PV power forecasting based on sky imagery," Energy, Elsevier, vol. 279(C).
    3. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    4. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    5. Sergiu-Mihai Hategan & Nicoleta Stefu & Marius Paulescu, 2023. "An Ensemble Approach for Intra-Hour Forecasting of Solar Resource," Energies, MDPI, vol. 16(18), pages 1-12, September.
    6. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    7. Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
    8. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    9. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
    11. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    12. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    13. Paulescu, Marius & Stefu, Nicoleta & Dughir, Ciprian & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2022. "A simple but accurate two-state model for nowcasting PV power," Renewable Energy, Elsevier, vol. 195(C), pages 322-330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mingyue & Han, Yang & Wang, Chaoyang & Yang, Ping & Wang, Congling & Zalhaf, Amr S., 2024. "Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data," Applied Energy, Elsevier, vol. 375(C).
    2. Paulescu, Marius & Blaga, Robert & Dughir, Ciprian & Stefu, Nicoleta & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2023. "Intra-hour PV power forecasting based on sky imagery," Energy, Elsevier, vol. 279(C).
    3. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    4. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    5. Wang, Jianzhou & Yu, Yue & Zeng, Bo & Lu, Haiyan, 2024. "Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis," Energy, Elsevier, vol. 288(C).
    6. Luo, Xing & Zhang, Dongxiao, 2023. "A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs," Energy, Elsevier, vol. 268(C).
    7. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    8. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    9. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    10. Filipe D. Campos & Tiago C. Sousa & Ramiro S. Barbosa, 2024. "Short-Term Forecast of Photovoltaic Solar Energy Production Using LSTM," Energies, MDPI, vol. 17(11), pages 1-19, May.
    11. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    12. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    13. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    14. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    15. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    16. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    17. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    18. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    19. Goutte, Stéphane & Klotzner, Klemens & Le, Hoang-Viet & von Mettenheim, Hans-Jörg, 2024. "Forecasting photovoltaic production with neural networks and weather features," Energy Economics, Elsevier, vol. 139(C).
    20. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.