IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422301900x.html
   My bibliography  Save this article

Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study

Author

Listed:
  • Zhang, Nan
  • Zhang, Yumeng
  • Duan, Liqiang
  • Hou, Hongjuan
  • Zhang, Hanfei
  • Zhou, Yong
  • Bao, Weiwei

Abstract

Building a multi-energy complementary power generation system is a viable way to encourage the use of renewable energy and decarbonize power generation. However, the intermittent nature of renewable power generation, such as photovoltaic and wind power, has prompted concerns regarding power grid stability. To balance such fluctuations, energy storage systems or other flexible power generation technologies should be integrated. In this paper, the peak regulation ability of integrated solar combined-cycle has been enhanced via employing a gas/oil exchanger between the top and bottom cycle. When integrating high penetration intermittent renewable energy, an appropriate operational strategy towards high-quality steady power output regulation is proposed. Dynamic performance analysis of the system, coupled characteristic of heat and mass transfer between subsystems have been highlighted. The case study demonstrates that fluctuations of the multi-energy complementary system power output can be controlled below 0.3 MW without renewable energy curtailment, even though wind-PV power generation fluctuates from 0.3 MW to 26.1 MW with variations per second reaching −2.8/3.7 MW. Furthermore, the system's levelized cost of electricity is down to 0.0512 $/kWh, which is cost-competitive with conventional power generation technologies.

Suggested Citation

  • Zhang, Nan & Zhang, Yumeng & Duan, Liqiang & Hou, Hongjuan & Zhang, Hanfei & Zhou, Yong & Bao, Weiwei, 2023. "Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422301900x
    DOI: 10.1016/j.energy.2023.128506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301900X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    2. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    3. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    4. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    5. Elmorsy, Louay & Morosuk, Tatiana & Tsatsaronis, George, 2022. "Comparative exergoeconomic evaluation of integrated solar combined-cycle (ISCC) configurations," Renewable Energy, Elsevier, vol. 185(C), pages 680-691.
    6. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    7. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    8. Xu, Weiwei & Zhou, Dan & Huang, Xiaoming & Lou, Boliang & Liu, Dong, 2020. "Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response," Applied Energy, Elsevier, vol. 275(C).
    9. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    2. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    3. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    4. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    5. Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
    6. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    7. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    8. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    11. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    12. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    13. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    14. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    15. Zuxian Zhang & Liqiang Duan & Zhen Wang & Yujie Ren, 2023. "Integration Optimization of Integrated Solar Combined Cycle (ISCC) System Based on System/Solar Photoelectric Efficiency," Energies, MDPI, vol. 16(8), pages 1-22, April.
    16. Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
    17. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    18. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    19. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    20. Heng Zhang & Na Wang & Kai Liang & Yang Liu & Haiping Chen, 2021. "Research on the Performance of Solar Aided Power Generation System Based on Annular Fresnel Solar Concentrator," Energies, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422301900x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.