Deep Learning Models for PV Power Forecasting: Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Francis Eng-Hock Tay & Lixiang Shen & Lijuan Cao, 2003. "Application of Support Vector Machines in Financial Time Series Forecasting," World Scientific Book Chapters, in: Ordinary Shares, Exotic Methods Financial Forecasting Using Data Mining Techniques, chapter 7, pages 111-129, World Scientific Publishing Co. Pte. Ltd..
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Al-Dahidi, Sameer & Alrbai, Mohammad & Rinchi, Bilal & Alahmer, Hussein & Al-Ghussain, Loiy & Hayajneh, Hassan S. & Alahmer, Ali, 2025. "Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models," Energy, Elsevier, vol. 323(C).
- Fachrizal Aksan & Vishnu Suresh & Przemysław Janik, 2025. "PV Generation Prediction Using Multilayer Perceptron and Data Clustering for Energy Management Support," Energies, MDPI, vol. 18(6), pages 1-16, March.
- Paolo Di Leo & Alessandro Ciocia & Gabriele Malgaroli & Filippo Spertino, 2025. "Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-28, April.
- Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Jadin, Mohd Shawal & Saari, Mohd Mawardi, 2025. "Hierarchical power output prediction for floating photovoltaic systems," Energy, Elsevier, vol. 323(C).
- Yanhui Liu & Jiulong Wang & Lingyun Song & Yicheng Liu & Liqun Shen, 2025. "Enhanced Short-Term PV Power Forecasting via a Hybrid Modified CEEMDAN-Jellyfish Search Optimized BiLSTM Model," Energies, MDPI, vol. 18(13), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Tiantian Tu, 2025. "Bridging Short- and Long-Term Dependencies: A CNN-Transformer Hybrid for Financial Time Series Forecasting," Papers 2504.19309, arXiv.org.
- Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.
- Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023.
"From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks,"
Papers
2311.16333, arXiv.org, revised Apr 2024.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Cai Tao & Junjie Lu & Jianxun Lang & Xiaosheng Peng & Kai Cheng & Shanxu Duan, 2021. "Short-Term Forecasting of Photovoltaic Power Generation Based on Feature Selection and Bias Compensation–LSTM Network," Energies, MDPI, vol. 14(11), pages 1-16, May.
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
- Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
- Kandaswamy Paramasivan & Brinda Subramani & Nandan Sudarsanam, 2022. "Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
- Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
- Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Mario Tovar & Miguel Robles & Felipe Rashid, 2020. "PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Haodong Wang & Huaxiong Zhang, 2025. "An Anomaly Detection Method for Multivariate Time Series Data Based on Variational Autoencoders and Association Discrepancy," Mathematics, MDPI, vol. 13(7), pages 1-17, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3973-:d:1453986. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.