IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025367.html
   My bibliography  Save this article

A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment

Author

Listed:
  • Pesantez, Jorge E.
  • Li, Binbin
  • Lee, Christopher
  • Zhao, Zhizhen
  • Butala, Mark
  • Stillwell, Ashlynn S.

Abstract

The increasing population migration to urban and peri-urban areas increases basic service needs for cities worldwide. Residential electricity demand increases with more customers and varies with novel uses, such as charging electric vehicles, which may add additional dynamics to the residential electricity demand profile. Widespread installation of smart electricity meters provides fine temporal resolution data reflecting current demands and supports predicting future demands. As part of a demand-side management program, understanding the main drivers of current electricity usage based on demand-driven and exogenous predictors represents a valuable tool for utilities facing new demand scenarios. This work presents the application of multiple models to forecast electricity demand based on the input data and the forecasting horizon. Models with exogenous variables as predictors are part of the input–output category, including a Feed Forward Neural Network, Random Forest, and a Linear Gaussian State Space model. The second category is demand-driven models, where predictors include only previous demand values. The demand-driven models in our analysis include a univariate Nonlinear Autoregressive Neural Network and a Linear Gaussian State Space. Using smart electricity meter data from the greater Chicago area, we compare the performance of the models on two different types of accounts: single- and multi-family residential users when forecasting one and multiple steps. Results show that the Linear Gaussian model reports an R2 of 0.99 compared to an average R2 of 0.92 from the Feed Forward Neural Networks and Random Forest when forecasting single- and multi-family electricity demand one step ahead. However, Nonlinear Autoregressive Neural Networks report an average R2 of 0.85 compared to the Linear Gaussian R2 of 0.58 when forecasting 48 steps. We also found that the most important predictors for single-family demand are temporal variables like weekdays, working and non-working days, and day hours. For multi-family demand, electricity demand at the same hour as the previous week replaces weekdays as a significant predictor. Different forecasting models can assist utilities and city planners to manage demand under different and novel residential electricity usage conditions.

Suggested Citation

  • Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025367
    DOI: 10.1016/j.energy.2023.129142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.