IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp422-439.html
   My bibliography  Save this article

Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting

Author

Listed:
  • AL-Musaylh, Mohanad S.
  • Deo, Ravinesh C.
  • Li, Yan
  • Adamowski, Jan F.

Abstract

Real-time energy management systems that are designed to support consumer supply and demand spectrums of electrical energy continue to face challenges with respect to designing accurate and reliable real-time forecasts due to the stochasticity of model construction data and the model’s inability to disseminate both the short- and the long-term electrical energy demand (G) predictions. Using real G data from Queensland, Australia’s second largest state, and employing the support vector regression (SVR) model integrated with an improved version of empirical mode decomposition with adaptive noise (ICEEMDAN) tool, this study aims to propose a novel hybrid model: ICEEMDAN-PSO-SVR. Optimization of the model’s weights and biases was performed using the particle swarm optimization (PSO) algorithm. ICEEMDAN was applied to improve the hybrid model’s forecasting accuracy, addressing non-linear and non-stationary issues in time series inputs by decomposing statistically significant historical G data into intrinsic mode functions (IMF) and a residual component. The ICEEMDAN-PSO-SVR model was then individually constructed to forecast IMFs and the residual datasets and the final G forecasts were obtained by aggregating the IMF and residual forecasted series. The performance of the ICEEMDAN-PSO-SVR technique was compared with alternative approaches: ICEEMDAN-multivariate adaptive regression spline (MARS) and ICEEMDAN-M5 model tree, as well as traditional modelling approaches: PSO-SVR, MARS and M5 model tree algorithms. To develop the models, data were partitioned into different subsets: training (70%), validation (15%), and testing (15%), and the tuned forecasting models with near global optimum solutions were applied and evaluated at multiple horizons: short-term (i.e., weekends, working days, whole weeks, and public holidays), and long-term (monthly). Statistical metrics including the root-mean square error (RMSE), mean absolute error (MAE) and their relative to observed means (RRMSE and MAPE), Willmott’s Index (WI), the Legates and McCabe Index (ELM) and Nash–Sutcliffe coefficients (ENS), were used to assess model accuracy in the independent (testing) period. Empirical results showed that the ICEEMDAN-PSO-SVR model performed well for all forecasting horizons, outperforming the alternative comparison approaches: ICEEMDAN-MARS and ICEEMDAN-M5 model tree and the PSO-SVR, PSO-MARS and PSO-M5 model tree algorithm. Due to its high predictive utility, the two-phase ICEEMDAN-PSO-SVR hybrid model was particularly appropriate for whole week forecasts (ENS=0.95, MAPE=0.89%, RRMSE=1.22%, and ELM=0.79), and monthly forecasts (ENS=0.70, MAPE=2.18%, RRMSE=3.18%, and ELM=0.56). The excellent performance of the ICEEMDAN-PSO-SVR hybrid model indicates that the two-phase hybrid model should be explored for potential applications in real-time energy management systems.

Suggested Citation

  • AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Li, Yan & Adamowski, Jan F., 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting," Applied Energy, Elsevier, vol. 217(C), pages 422-439.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:422-439
    DOI: 10.1016/j.apenergy.2018.02.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.
    2. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    3. Marzband, Mousa & Ghadimi, Majid & Sumper, Andreas & Domínguez-García, José Luis, 2014. "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, Elsevier, vol. 128(C), pages 164-174.
    4. Marzband, Mousa & Sumper, Andreas & Ruiz-Álvarez, Albert & Domínguez-García, José Luis & Tomoiagă, Bogdan, 2013. "Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets," Applied Energy, Elsevier, vol. 106(C), pages 365-376.
    5. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    6. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
    7. Ali Rahimikhoob & Maryam Asadi & Mahmood Mashal, 2013. "A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4815-4826, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    4. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    5. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    6. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    7. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    8. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    9. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    10. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    11. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    12. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
    14. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    15. Nian Shi & Yi Luo, 2017. "Energy Storage System Sizing Based on a Reliability Assessment of Power Systems Integrated with Wind Power," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    16. Roslan, M.F. & Hannan, M.A. & Jern Ker, Pin & Begum, R.A. & Indra Mahlia, TM & Dong, Z.Y., 2021. "Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction," Applied Energy, Elsevier, vol. 292(C).
    17. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    18. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    19. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    20. Prasad, Ramendra & Ali, Mumtaz & Kwan, Paul & Khan, Huma, 2019. "Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation," Applied Energy, Elsevier, vol. 236(C), pages 778-792.

    More about this item

    Keywords

    SVR; PSO; Improved CEEMDAN; Electricity demand; MARS; M5 model tree; Energy management system;
    All these keywords.

    JEL classification:

    • M5 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:422-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.