IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i489y2010p25-35.html
   My bibliography  Save this article

Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

Author

Listed:
  • Sloughter, J. McLean
  • Gneiting, Tilmann
  • Raftery, Adrian E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
  • Handle: RePEc:bes:jnlasa:v:105:i:489:y:2010:p:25-35
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2009.ap08615
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    2. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    3. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    4. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
    5. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    6. Michael Stanley Smith & Thomas S. Shively, 2018. "Econometric Modeling of Regional Electricity Spot Prices in the Australian Market," Papers 1804.08218, arXiv.org.
    7. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    8. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2015. "Calibrating ensemble forecasting models with sparse data in the social sciences," International Journal of Forecasting, Elsevier, vol. 31(3), pages 930-942.
    9. Chen, Shu-Hua & Yang, Shu-Chih & Chen, Chih-Ying & van Dam, C.P. & Cooperman, Aubryn & Shiu, Henry & MacDonald, Clinton & Zack, John, 2019. "Application of bias corrections to improve hub-height ensemble wind forecasts over the Tehachapi Wind Resource Area," Renewable Energy, Elsevier, vol. 140(C), pages 281-291.
    10. Thorey, J. & Chaussin, C. & Mallet, V., 2018. "Ensemble forecast of photovoltaic power with online CRPS learning," International Journal of Forecasting, Elsevier, vol. 34(4), pages 762-773.
    11. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Li, Yan & Adamowski, Jan F., 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting," Applied Energy, Elsevier, vol. 217(C), pages 422-439.
    12. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    13. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
    14. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    16. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    17. Ramin, Maryam & Labencki, Tanya & Boyd, Duncan & Trolle, Dennis & Arhonditsis, George B., 2012. "A Bayesian synthesis of predictions from different models for setting water quality criteria," Ecological Modelling, Elsevier, vol. 242(C), pages 127-145.
    18. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
    19. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    20. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    21. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    22. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    23. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:489:y:2010:p:25-35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.