IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025820.html
   My bibliography  Save this article

Day-ahead prediction of electric vehicle charging demand based on quadratic decomposition and dual attention mechanisms

Author

Listed:
  • Guo, Hongxia
  • Chen, Lingxuan
  • Wang, Zhaocai
  • Li, Lin

Abstract

Electric vehicles (EVs) are poised to become a vital flexibility resource in the future power system. However, due to their inherent stochastic nature, accurately predicting EV charging demand in advance, which is essential for power dispatchers seeking to optimize decisions. This study introduces a novel day-ahead prediction model for EV charging demand leveraging quadratic decomposition and Dual Attention (DA) mechanism. Based on the principle that daily charging demand curve results from the superposition of EV charging sessions, this study using Affinity Propagation (AP) clustering algorithm aiming to extract typical EV charging sessions that represent the charging patterns of average EV users, thereby enabling primary decomposition of the charging demand curve. Subsequently, a quadratic decomposition based on Variational Modal Decomposition (VMD) separates the low-frequency trend component from the high-frequency perturbation component in the charging load curves. The DA mechanism is then integrated into a predictive framework to forecast the demand for EV charging for the next day. The performance of the proposed method is assessed through the analysis of nearly 6000 charging periods from charging sessions at a highway charging station and a public charging station in South China. The results indicate that both the primary decomposition, which is based on clustering EV charging sessions, and the secondary decomposition, which utilizes VMD have significantly enhanced prediction accuracy. Furthermore, the proposed model surpasses the control algorithm across various metrics and exhibits robust generalization performance when compared across different types of charging station data.

Suggested Citation

  • Guo, Hongxia & Chen, Lingxuan & Wang, Zhaocai & Li, Lin, 2025. "Day-ahead prediction of electric vehicle charging demand based on quadratic decomposition and dual attention mechanisms," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025820
    DOI: 10.1016/j.apenergy.2024.125198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiqing Gan & Wenjun Ruan & Mingshen Wang & Yi Pan & Huiyu Miu & Xiaodong Yuan, 2024. "Bi-Level Planning of Electric Vehicle Charging Stations Considering Spatial–Temporal Distribution Characteristics of Charging Loads in Uncertain Environments," Energies, MDPI, vol. 17(12), pages 1-30, June.
    2. Yin, Wanjun & Ji, Jianbo & Wen, Tao & Zhang, Chao, 2023. "Study on orderly charging strategy of EV with load forecasting," Energy, Elsevier, vol. 278(C).
    3. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    4. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    5. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    6. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    7. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    8. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    9. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    10. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    11. Tehseen Mazhar & Rizwana Naz Asif & Muhammad Amir Malik & Muhammad Asgher Nadeem & Inayatul Haq & Muhammad Iqbal & Muhammad Kamran & Shahzad Ashraf, 2023. "Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    12. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    13. Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
    14. P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
    15. Shi, Jie & Yu, Nanpeng & Gao, H. Oliver, 2022. "Bidding strategy for wireless charging roads with energy storage in real-time electricity markets," Applied Energy, Elsevier, vol. 327(C).
    16. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    17. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
    18. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    19. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    20. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    21. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    22. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    23. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    24. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    25. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    26. Juan A. Dominguez-Jimenez & Javier E. Campillo & Oscar Danilo Montoya & Enrique Delahoz & Jesus C. Hernández, 2020. "Seasonality Effect Analysis and Recognition of Charging Behaviors of Electric Vehicles: A Data Science Approach," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    27. Gilanifar, Mostafa & Parvania, Masood, 2021. "Clustered multi-node learning of electric vehicle charging flexibility," Applied Energy, Elsevier, vol. 282(PB).
    28. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
    29. Tikka, Ville & Haapaniemi, Jouni & Räisänen, Otto & Honkapuro, Samuli, 2022. "Convolutional neural networks in estimating the spatial distribution of electric vehicles to support electricity grid planning," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Yingrui & Cheng, Lin & Qi, Ning & Wang, Xinyi & Chen, Yue, 2025. "Real-time hosting capacity assessment for electric vehicles: A sequential forecast-then-optimize method," Applied Energy, Elsevier, vol. 380(C).
    2. Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Jian Chen & Fangyi Li & Ranran Yang & Dawei Ma, 2020. "Impacts of Increasing Private Charging Piles on Electric Vehicles’ Charging Profiles: A Case Study in Hefei City, China," Energies, MDPI, vol. 13(17), pages 1-17, August.
    5. Lee, Wonjong & Koo, Yoonmo & Kim, Yong-gun, 2024. "Environmental time-of-use scheme: Strategic leveraging of financial and environmental incentives for greener electric vehicle charging," Energy, Elsevier, vol. 309(C).
    6. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    7. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    8. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    9. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    10. Haihong Bian & Quance Ren & Zhengyang Guo & Chengang Zhou & Zhiyuan Zhang & Ximeng Wang, 2024. "Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.
    11. Pokpong Prakobkaew & Somporn Sirisumrannukul, 2022. "Practical Grid-Based Spatial Estimation of Number of Electric Vehicles and Public Chargers for Country-Level Planning with Utilization of GIS Data," Energies, MDPI, vol. 15(11), pages 1-19, May.
    12. Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).
    13. Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "Day-ahead load forecast based on Conv2D-GRU_SC aimed to adapt to steep changes in load," Energy, Elsevier, vol. 302(C).
    14. Richard, René & Cao, Hung & Wachowicz, Monica, 2022. "EVStationSIM: An end-to-end platform to identify and interpret similar clustering patterns of EV charging stations across multiple time slices," Applied Energy, Elsevier, vol. 322(C).
    15. Simolin, Toni & Rauma, Kalle & Viri, Riku & Mäkinen, Johanna & Rautiainen, Antti & Järventausta, Pertti, 2021. "Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites," Applied Energy, Elsevier, vol. 303(C).
    16. Yu, Qing & Li, Jiaxing & Feng, Defan & Liu, Xuanyu & Yuan, Jian & Zhang, Haoran & Wang, Xin, 2025. "Modeling electric vehicle behavior: Insights from long-term charging and energy consumption patterns through empirical trajectory data," Applied Energy, Elsevier, vol. 380(C).
    17. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    18. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    19. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    20. Bruno Knevitz Hammerschmitt & Clodomiro Unsihuay-Vila & Jordan Passinato Sausen & Marcelo Bruno Capeletti & Alexandre Rasi Aoki & Mateus Duarte Teixeira & Carlos Henrique Barriquello & Alzenira da Ros, 2024. "Adaptive Charging Simulation Model for Different Electric Vehicles and Mobility Patterns," Energies, MDPI, vol. 17(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.