IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001053.html
   My bibliography  Save this article

Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application

Author

Listed:
  • Türkoğlu, A. Selim
  • Erkmen, Burcu
  • Eren, Yavuz
  • Erdinç, Ozan
  • Küçükdemiral, İbrahim

Abstract

Considering the electricity market, data analytics paves the way for completely new strategies regarding demand and supply-side policies. In this manner, predictive analysis of the demanded power accuracy is carried out to boost profits and increase the penetration of similar demand response (DR) programs across all levels of end-user categories. Residential loads experience stiff spikes and unpredictable variations due to occupancy activities and environmental factors. To address this, we first propose a robust short-term multivariate-multistep forecasting framework that is resilient to missing or erroneous data, employing temporal convolution networks (TCNs). We then incorporate two distinct valley-filling indices to optimize the charging of electric vehicle loads according to DR requirements, showcasing the efficacy of leveraging artificial intelligence to enhance the utilization of clean energy resources. Simulation studies are conducted using real-world nodal residential loads with hourly granularity. The results demonstrate that the forecasting method is reliable for residential locations, even when dealing with highly damaged data. The case studies effectively fill the load into the valleys and minimize fluctuations in residential locations. Through the integration of emission-aware forecasting and optimization strategies, our study lays the groundwork for a comprehensive approach that not only improves economic outcomes and grid stability but also advances the imperative of reducing carbon emissions.

Suggested Citation

  • Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001053
    DOI: 10.1016/j.apenergy.2024.122722
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.