Author
Listed:
- Zifan Ning
(College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Department of Engineering, King’s College London, London WC2R 2LS, UK)
- Min Jin
(College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)
- Pan Zeng
(College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)
Abstract
Power demand forecasting is a critical and challenging task for modern power systems and integrated energy systems. Due to the absence of well-established theoretical frameworks and publicly available feature databases on power demand changes, the known interpretable features of power demand fluctuations are primarily derived from expert experience and remain significantly limited. This substantially hinders advancements in power demand forecasting accuracy. Emerging multimodal learning approaches have demonstrated great promise in machine learning and AI-generated content (AIGC). In this paper, we propose, for the first time, a textual-knowledge-guided numerical feature discovery (TKNFD) framework for short-term power demand forecasting by interacting text modal data—a potentially valuable yet long-overlooked resource in the field of power demand forecasting—with numerical modal data. TKNFD systematically and automatically aggregates qualitative textual knowledge, expands it into a candidate feature-type set, collects corresponding numerical data for these features, and ultimately constructs four-dimensional multivariate source-tracking databases (4DM-STDs). Subsequently, TKNFD introduces a two-stage quantitative feature identification strategy that operates independently of forecasting models. The essence of TKNFD lies in achieving reliable and comprehensive feature discovery by fully exploiting the dual relationships of synonymy and complementarity between text modal data and numerical modal data in terms of granularity, scope, and temporality. In this study, TKNFD identifies 38–50 features while further interpreting their contributions and dependency correlations. Benchmark experiments conducted in Maine, Texas, and New South Wales demonstrate that the forecasting accuracy using TKNFD-identified features consistently surpasses that of state-of-the-art feature schemes by up to 36.37% MAPE. Notably, driven by multimodal interaction, TKNFD can discover previously unknown interpretable features without relying on prior empirical knowledge. This study reveals 10–16 previously unknown interpretable features, particularly several dominant features in integrated energy and astronomical dimensions. These discoveries enhance our understanding of the origins of strong randomness and non-linearity in power demand fluctuations. Additionally, the 4DM-STDs developed for these three regions can serve as public baseline databases for future research.
Suggested Citation
Zifan Ning & Min Jin & Pan Zeng, 2025.
"A Multimodal Interaction-Driven Feature Discovery Framework for Power Demand Forecasting,"
Energies, MDPI, vol. 18(11), pages 1-25, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:11:p:2907-:d:1670082
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2907-:d:1670082. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.