IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp1143-1153.html
   My bibliography  Save this article

Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region

Author

Listed:
  • Alipour, Panteha
  • Mukherjee, Sayanti
  • Nateghi, Roshanak

Abstract

Accurate forecasting of peak electricity load has long been an active area of research in electricity markets, and power systems planning and operation. Unanticipated climate-induced surges in peak load can lead to supply shortages causing frequent brownouts and blackouts, and large-scale socioeconomic impacts. In this paper, the climate sensitivity of daily peak load is characterized by leveraging advanced statistical machine learning algorithms. More specifically, a rigorously tested and validated predictive model based on the Bayesian additive regression trees algorithm is proposed. Results from this study revealed that maximum daily temperature followed by mean dew point temperature are the most important predictors of the climate-sensitive portion of daily peak load. Among the non-climatic predictors, electricity price was found to have a strong positive association with the daily peak load. Economic growth was observed to have an inverse association with the daily peak load. While the proposed framework is established for the state of Texas, one of the most energy-intensive states with geographic and demographic susceptibility to climatic change, the methodology can be extended to other states/regions. The model can also be used to make short-term predictions of the climate-sensitive portion of daily peak load.

Suggested Citation

  • Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1143-1153
    DOI: 10.1016/j.energy.2019.07.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    2. Rong Chen & John L. Harris & Jun M. Liu & Lon-Mu Liu, 2006. "A semi-parametric time series approach in modeling hourly electricity loads," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 537-559.
    3. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    4. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    5. Roshanak Nateghi & Sayanti Mukherjee, 2017. "A multi-paradigm framework to assess the impacts of climate change on end-use energy demand," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    6. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    7. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    8. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    9. Mukhopadhyay, Sayanti & Nateghi, Roshanak, 2017. "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States," Energy, Elsevier, vol. 128(C), pages 688-700.
    10. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    11. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    12. Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
    13. Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganguly, Prasangsha & Mukherjee, Sayanti, 2021. "A multifaceted risk assessment approach using statistical learning to evaluate socio-environmental factors associated with regional felony and misdemeanor rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    3. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    4. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    5. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renee Obringer & Rohini Kumar & Roshanak Nateghi, 2020. "Managing the water–electricity demand nexus in a warming climate," Climatic Change, Springer, vol. 159(2), pages 233-252, March.
    2. Obringer, Renee & Mukherjee, Sayanti & Nateghi, Roshanak, 2020. "Evaluating the climate sensitivity of coupled electricity-natural gas demand using a multivariate framework," Applied Energy, Elsevier, vol. 262(C).
    3. Ganguly, Prasangsha & Mukherjee, Sayanti, 2021. "A multifaceted risk assessment approach using statistical learning to evaluate socio-environmental factors associated with regional felony and misdemeanor rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    6. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    7. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    8. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    9. Sayanti Mukherjee & Roshanak Nateghi, 2019. "A Data‐Driven Approach to Assessing Supply Inadequacy Risks Due to Climate‐Induced Shifts in Electricity Demand," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 673-694, March.
    10. Leigh Raymond & Douglas Gotham & William McClain & Sayanti Mukherjee & Roshanak Nateghi & Paul V. Preckel & Peter Schubert & Shweta Singh & Elizabeth Wachs, 2020. "Projected climate change impacts on Indiana’s Energy demand and supply," Climatic Change, Springer, vol. 163(4), pages 1933-1947, December.
    11. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    12. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    13. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    14. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    15. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    16. Magnano, L. & Boland, J.W., 2007. "Generation of synthetic sequences of electricity demand: Application in South Australia," Energy, Elsevier, vol. 32(11), pages 2230-2243.
    17. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    18. Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
    19. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    20. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:1143-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.