IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012745.html
   My bibliography  Save this article

Integrated loads forecasting with absence of crucial factors

Author

Listed:
  • Hu, Rong
  • Zhou, Kaile
  • Lu, Xinhui

Abstract

Accurate forecasting of multi energy loads is critical for the stable operation of urban integrated energy systems. However, urban integrated energy systems operate under complex and dynamic conditions, where crucial input factors, such as meteorological conditions, are often difficult to obtain with high accuracy due to sensor malfunctions, data transmission failures, or inherent uncertainties in weather predictions. The absence of these crucial factors leads to incomplete input information, thereby compromising the reliability of load forecasting. Addressing this challenge requires method that can mitigate the impact of absent crucial factor data while maintaining high forecasting accuracy. Therefore, this study proposes an integrated loads forecasting method that enhances predictive accuracy despite absent crucial factors. First, the proposed method reconstructs the multi energy loads sequences to obtain more information about their temporal variations. Then, a multi-task learning model is developed to capture the intrinsic interdependencies among cooling, heating, and electric power loads through a parameter sharing mechanism. This enables the model to compensate for absent critical factors by leveraging the correlations among different energy loads. Finally, compared with the bidirectional gated recursive unit, the proposed method improves the accuracy of integrated forecasting cooling, heating, and electric power loads by 76.51 %, 38.52 %, and 42.42 % respectively while reducing total computation time for integrated loads forecasting by 27.23 %. These improvements facilitate more reliable energy demand predictions, supporting the optimal management and utilization of multi energy resources in urban integrated energy systems.

Suggested Citation

  • Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012745
    DOI: 10.1016/j.energy.2025.135632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    2. Jiacheng Huang & Xiaowen Zhang & Xuchu Jiang, 2023. "Short-term power load forecasting based on the CEEMDAN-TCN-ESN model," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-26, October.
    3. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    4. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    5. Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
    6. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    7. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    8. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Li, Kangping & Li, Zhenghui & Huang, Chunyi & Ai, Qian, 2024. "Online transfer learning-based residential demand response potential forecasting for load aggregator," Applied Energy, Elsevier, vol. 358(C).
    10. Wang, Han & Yan, Jie & Zhang, Jiawei & Liu, Shihua & Liu, Yongqian & Han, Shuang & Qu, Tonghui, 2024. "Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning," Energy, Elsevier, vol. 304(C).
    11. Jiang, Zongxi & Zhang, Luliang & Ji, Tianyao, 2023. "NSDAR: A neural network-based model for similar day screening and electric load forecasting," Applied Energy, Elsevier, vol. 349(C).
    12. Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
    13. Wen, Qianyun & Liu, Yang, 2025. "Feature engineering and selection for prosumer electricity consumption and production forecasting: A comprehensive framework," Applied Energy, Elsevier, vol. 381(C).
    14. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    15. Gregor Semieniuk & Lance Taylor & Armon Rezai & Duncan K. Foley, 2021. "Plausible energy demand patterns in a growing global economy with climate policy," Nature Climate Change, Nature, vol. 11(4), pages 313-318, April.
    16. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    17. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    18. Wang, Sen & Zhang, Wenjie & Sun, Yonghui & Trivedi, Anupam & Chung, C.Y. & Srinivasan, Dipti, 2024. "Wind Power Forecasting in the presence of data scarcity: A very short-term conditional probabilistic modeling framework," Energy, Elsevier, vol. 291(C).
    19. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    20. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    21. Shi, Jian & Teh, Jiashen & Alharbi, Bader & Lai, Ching-Ming, 2024. "Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model," Energy, Elsevier, vol. 297(C).
    22. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
    23. Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
    24. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    25. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    26. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    27. Shangwei Liu & Yang Guo & Fabian Wagner & Hongxun Liu & Ryna Yiyun Cui & Denise L. Mauzerall, 2024. "Diversifying heat sources in China’s urban district heating systems will reduce risk of carbon lock-in," Nature Energy, Nature, vol. 9(8), pages 1021-1031, August.
    28. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    29. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    30. Zhao, Xiaohu & Huang, Guohe & Lu, Chen & Zhou, Xiong & Li, Yongping, 2020. "Impacts of climate change on photovoltaic energy potential: A case study of China," Applied Energy, Elsevier, vol. 280(C).
    31. Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
    32. Seleshi G. Yalew & Michelle T. H. van Vliet & David E. H. J. Gernaat & Fulco Ludwig & Ariel Miara & Chan Park & Edward Byers & Enrica De Cian & Franziska Piontek & Gokul Iyer & Ioanna Mouratiadou & Ja, 2020. "Impacts of climate change on energy systems in global and regional scenarios," Nature Energy, Nature, vol. 5(10), pages 794-802, October.
    33. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    34. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    35. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    36. Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
    37. Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
    2. Yin, Linfei & Ju, Linyi, 2025. "ShuffleTransformerMulti-headAttentionNet network for user load forecasting," Energy, Elsevier, vol. 322(C).
    3. Ren, Xiaoxiao & Tian, Xin & Wang, Kai & Yang, Sifan & Chen, Weixiong & Wang, Jinshi, 2025. "Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion," Energy, Elsevier, vol. 319(C).
    4. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    5. Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).
    6. Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
    7. Chen, Wenhao & Rong, Fei & Lin, Chuan, 2025. "A multi-energy loads forecasting model based on dual attention mechanism and multi-scale hierarchical residual network with gated recurrent unit," Energy, Elsevier, vol. 320(C).
    8. Xie, Xiangmin & Ding, Yuhao & Sun, Yuanyuan & Zhang, Zhisheng & Fan, Jianhua, 2024. "A novel time-series probabilistic forecasting method for multi-energy loads," Energy, Elsevier, vol. 306(C).
    9. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Liao, Chengchen & Tan, Mao & Li, Kang & Chen, Jie & Wang, Rui & Su, Yongxin, 2024. "Sequence signal prediction and reconstruction for multi-energy load forecasting in integrated energy systems: A bi-level multi-task learning method," Energy, Elsevier, vol. 313(C).
    11. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Long-term price guidance mechanism for integrated energy systems based on gated recurrent unit - vision transformer prediction and fractional-order stochastic dynamic calculus control," Energy, Elsevier, vol. 312(C).
    12. Fan, Pengdan & Wang, Dan & Wang, Wei & Zhang, Xiuyu & Sun, Yuying, 2024. "A novel multi-energy load forecasting method based on building flexibility feature recognition technology and multi-task learning model integrating LSTM," Energy, Elsevier, vol. 308(C).
    13. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
    14. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    15. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    16. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    17. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    18. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    19. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    20. Rodriguez-Matas, Antonio F. & Ruiz, Carlos & Linares, Pedro & Perez-Bravo, Manuel, 2025. "How energy strategies are shaped by the correlation of uncertainties," Applied Energy, Elsevier, vol. 382(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.