IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224006169.html
   My bibliography  Save this article

An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing

Author

Listed:
  • Zhang, Lei
  • Huang, Zhijia
  • Wang, Zhenpo
  • Li, Xiaohui
  • Sun, Fengchun

Abstract

The rapid adoption of electric vehicles (EVs) has led to dramatic increase in charging demands that poses great challenges for efficient charging infrastructure rollout and operation. It is crucial to accurately assess charging demand in urban areas to optimize the siting and sizing of charging infrastructure. This paper proposes a novel urban charging load forecasting model for private passenger EVs based on massive operating data of EVs in Beijing. First, the characteristics of travel patterns for private passenger EVs, urban road network, functional area distribution and charging infrastructure distribution within the entire Beijing area are identified. Then a charging load forecasting model that can simultaneously simulate trip chains for EVs is constructed by considering the occupancy states of public charging piles and the interactions among different EVs. Finally, the effectiveness of the proposed charging load forecasting model is verified based on comprehensive test data. Our findings imply that the number of EVs at recharge and the charging power can be reliably predicted with the accuracy of over 84.73 % and 81.92 %, respectively. It provides the foundation for optimal charging infrastructure planning and charging scheduling.

Suggested Citation

  • Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224006169
    DOI: 10.1016/j.energy.2024.130844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224006169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.