IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4784-d851654.html
   My bibliography  Save this article

Selecting Surface Inclination for Maximum Solar Power

Author

Listed:
  • Ioannis-Panagiotis Raptis

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
    Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Anna Moustaka

    (Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236 Athens, Greece)

  • Panagiotis Kosmopoulos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece)

  • Stelios Kazadzis

    (Physicalisch-Meteorologisches Observatorium Davos—World Radiation Center, 7260 Davos, Switzerland)

Abstract

Maximum efficiency of surfaces that exploit solar energy, including Photovoltaic Panels and Thermal collectors, is achieved by installing them in a certain inclination (tilt). Most common approach is to select an inclination angle equal to the location’s latitude. This is based on the astronomical calculations of the sun’s position throughout the year but ignores meteorological factors. Cloud coverage and aerosols tend to change the direct irradiance but also the radiance sky distribution, thus horizontal surfaces receive larger amounts than tilted ones in specific atmospheric conditions (e.g., cases of cloud presence). In the present study we used 15 years of data, from 25 cities in Europe and North Africa in order to estimate the optimal tilt angle and the related energy benefits based in real atmospheric conditions. Data were retrieved from Copernicus Atmospheric Monitoring Service (CAMS). Four diffuse irradiance, various models are compared, and their differences are evaluated. Equations, extracted from solar irradiance and cloud properties regressions, are suggested to estimate the optimal tilt angle in regions, where no climatological data are available. In addition, the impact of cloud coverage is parameterized using the Cloud Modification Factor ( CMF ) and an equation is proposed to estimate the optimal tilt angle. A realistic representation of the photovoltaic energy production and a subsequent financial analysis were additionally performed. The results are able to support the prognosis of energy outcome and should be part of energy planning and the decision making for optimum solar power exploitation into the international clean energy transitions. Finally, results are compared to a global study and differences on the optimal tilt angle at cities of Northern Europe is presented.

Suggested Citation

  • Ioannis-Panagiotis Raptis & Anna Moustaka & Panagiotis Kosmopoulos & Stelios Kazadzis, 2022. "Selecting Surface Inclination for Maximum Solar Power," Energies, MDPI, vol. 15(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4784-:d:851654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    2. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.
    3. Lave, Matthew & Kleissl, Jan, 2011. "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Renewable Energy, Elsevier, vol. 36(3), pages 1145-1152.
    4. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
    5. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    6. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    7. David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
    8. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    9. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    2. Harry D. Kambezidis & Konstantinos Mimidis & Kosmas A. Kavadias, 2023. "The Solar Energy Potential of Greece for Flat-Plate Solar Panels Mounted on Double-Axis Systems," Energies, MDPI, vol. 16(13), pages 1-28, June.
    3. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    2. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    3. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    4. Jamil, Wan Juzaili & Abdul Rahman, Hasimah & Shaari, Sulaiman & Salam, Zainal, 2017. "Performance degradation of photovoltaic power system: Review on mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 876-891.
    5. Haixiang Zang & Mian Guo & Zhinong Wei & Guoqiang Sun, 2016. "Determination of the Optimal Tilt Angle of Solar Collectors for Different Climates of China," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    6. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.
    7. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    8. Essa Alhamer & Addison Grigsby & Rydge Mulford, 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States," Energies, MDPI, vol. 15(20), pages 1-14, October.
    9. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    10. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    11. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    12. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    13. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    14. Gökmen, Nuri & Hu, Weihao & Hou, Peng & Chen, Zhe & Sera, Dezso & Spataru, Sergiu, 2016. "Investigation of wind speed cooling effect on PV panels in windy locations," Renewable Energy, Elsevier, vol. 90(C), pages 283-290.
    15. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2018. "Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2625-2636.
    16. Oh, Myeongchan & Kim, Jin-Young & Kim, Boyoung & Yun, Chang-Yeol & Kim, Chang Ki & Kang, Yong-Heack & Kim, Hyun-Goo, 2021. "Tolerance angle concept and formula for practical optimal orientation of photovoltaic panels," Renewable Energy, Elsevier, vol. 167(C), pages 384-394.
    17. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    18. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    19. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.
    20. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4784-:d:851654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.