IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1397-1409.html
   My bibliography  Save this article

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study

Author

Listed:
  • Rowlands, Ian H.
  • Kemery, Briana Paige
  • Beausoleil-Morrison, Ian

Abstract

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36° and 38° for Ottawa, which is at a latitude of 45°N, and between 32° and 35° for Toronto, which is at a latitude of 44°N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4° west of due south and 6° east of due south for Ottawa, and between 1° west of due south and 2° east of due south for Toronto). In conclusion, the importance of solar electricity - particularly valuable because of when it is produced and where it can be produced - is highlighted, as are future priorities for research.

Suggested Citation

  • Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1397-1409
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00893-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    2. Ian H. Rowlands, 2007. "The Development of Renewable Electricity Policy in the Province of Ontario: The Influence of Ideas and Timing," Review of Policy Research, Policy Studies Organization, vol. 24(3), pages 185-207, May.
    3. Mills, Andrew & Wiser, Ryan & Barbose, Galen & Golove, William, 2008. "The impact of retail rate structures on the economics of commercial photovoltaic systems in California," Energy Policy, Elsevier, vol. 36(9), pages 3266-3277, September.
    4. Chris Adachi & Ian H. Rowlands, 2009. "The Role of Policies in Supporting the Diffusion of Solar Photovoltaic Systems: Experiences with Ontario, Canada’s Renewable Energy Standard Offer Program," Sustainability, MDPI, vol. 2(1), pages 1-18, December.
    5. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    6. Rowlands, Ian H., 2005. "Solar PV electricity and market characteristics: two Canadian case-studies," Renewable Energy, Elsevier, vol. 30(6), pages 815-834.
    7. Brown, Sarah J. & Rowlands, Ian H., 2009. "Nodal pricing in Ontario, Canada: Implications for solar PV electricity," Renewable Energy, Elsevier, vol. 34(1), pages 170-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jägemann, Cosima & Hagspiel, Simeon & Lindenberger, Dietmar, 2013. "The Economic Inefficiency of Grid Parity: The Case of German Photovoltaics," EWI Working Papers 2013-19, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Tripathy, M. & Yadav, S. & Sadhu, P.K. & Panda, S.K., 2017. "Determination of optimum tilt angle and accurate insolation of BIPV panel influenced by adverse effect of shadow," Renewable Energy, Elsevier, vol. 104(C), pages 211-223.
    3. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    4. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    5. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    6. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    7. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    8. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    9. Essa Alhamer & Addison Grigsby & Rydge Mulford, 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States," Energies, MDPI, vol. 15(20), pages 1-14, October.
    10. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    11. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    12. Rosenbloom, Daniel & Meadowcroft, James, 2014. "The journey towards decarbonization: Exploring socio-technical transitions in the electricity sector in the province of Ontario (1885–2013) and potential low-carbon pathways," Energy Policy, Elsevier, vol. 65(C), pages 670-679.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    15. Valentine, Scott Victor, 2010. "Canada's constitutional separation of (wind) power," Energy Policy, Elsevier, vol. 38(4), pages 1918-1930, April.
    16. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    17. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.
    18. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    19. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    20. Lewis, Geoffrey McD., 2010. "Estimating the value of wind energy using electricity locational marginal price," Energy Policy, Elsevier, vol. 38(7), pages 3221-3231, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1397-1409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.