IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3094-d1677243.html
   My bibliography  Save this article

Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services

Author

Listed:
  • José M. Liceaga-Ortiz-De-La-Peña

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Jorge A. Ruiz-Vanoye

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Juan M. Xicoténcatl-Pérez

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Ocotlán Díaz-Parra

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Alejandro Fuentes-Penna

    (El Colegio de Morelos, Av. Morelos Sur 154, Esquina Con Amates, Colonia Las Palmas, Cuernavaca 62050, Mexico)

  • Ricardo A. Barrera-Cámara

    (Facultad de Ciencias de la Información, Universidad Autónoma del Carmen, Calle 56 No. 4, Esquina con Avenida Concordia, Colonia Benito Juárez, Ciudad del Carmen 24180, Mexico)

  • Daniel Robles-Camarillo

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Marco A. Márquez-Vera

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Francisco R. Trejo-Macotela

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Luis A. Ortiz-Suárez

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

Abstract

The transformation of traditional energy systems into smart energy systems has ushered in an era of efficiency, sustainability and technological growth. In this paper, we propose a new definition for “Quality of Energy Service” that focuses on ensuring optimal power-supply quality, encompassing factors such as availability, speed (i.e., the time to restore or adjust supply following interruptions or load changes) and reliability of supply. We explore the integration of advanced algorithms specifically tailored to enhance the Quality of Energy Services. By concentrating on key aspects—reliability, availability and operational efficiency—the study reviews how various algorithmic approaches, from machine learning models to classical optimisation techniques, can significantly improve power grid management. These algorithms are evaluated for their potential to optimise load distribution, predict system failures and manage real-time adjustments in power supply, thereby ensuring higher service quality and grid stability. The findings aim to provide actionable insights for policymakers, engineers and industry stakeholders seeking to advance smart grid technologies and meet global energy standards. Furthermore, we present a case study to demonstrate how these models can be integrated to optimise grid management, forecast energy demand and enhance operational efficiency. We employ multiple machine learning models—including Random Forest, XGBoost version 1.6.1 and Long Short-Term Memory (LSTM) networks—to predict future energy demand. These models are then combined within an ensemble learning framework to improve both the accuracy and robustness of the forecasts. Our ensemble framework not only predicts energy consumption but also optimises battery storage utilisation, ensuring continuous energy availability and reducing reliance on external energy sources. The proposed stacking ensemble achieved a forecasting accuracy of 99.06%, with a Mean Absolute Percentage Error (MAPE) of 0.9364% and a Coefficient of Determination (R 2 ) of 0.998345, highlighting its superior performance compared to each individual base model.

Suggested Citation

  • José M. Liceaga-Ortiz-De-La-Peña & Jorge A. Ruiz-Vanoye & Juan M. Xicoténcatl-Pérez & Ocotlán Díaz-Parra & Alejandro Fuentes-Penna & Ricardo A. Barrera-Cámara & Daniel Robles-Camarillo & Marco A. Márq, 2025. "Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services," Energies, MDPI, vol. 18(12), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3094-:d:1677243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3094/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3094-:d:1677243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.