IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3094-d1677243.html
   My bibliography  Save this article

Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services

Author

Listed:
  • José M. Liceaga-Ortiz-De-La-Peña

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Jorge A. Ruiz-Vanoye

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Juan M. Xicoténcatl-Pérez

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Ocotlán Díaz-Parra

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Alejandro Fuentes-Penna

    (El Colegio de Morelos, Av. Morelos Sur 154, Esquina Con Amates, Colonia Las Palmas, Cuernavaca 62050, Mexico)

  • Ricardo A. Barrera-Cámara

    (Facultad de Ciencias de la Información, Universidad Autónoma del Carmen, Calle 56 No. 4, Esquina con Avenida Concordia, Colonia Benito Juárez, Ciudad del Carmen 24180, Mexico)

  • Daniel Robles-Camarillo

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Marco A. Márquez-Vera

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Francisco R. Trejo-Macotela

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Luis A. Ortiz-Suárez

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

Abstract

The transformation of traditional energy systems into smart energy systems has ushered in an era of efficiency, sustainability and technological growth. In this paper, we propose a new definition for “Quality of Energy Service” that focuses on ensuring optimal power-supply quality, encompassing factors such as availability, speed (i.e., the time to restore or adjust supply following interruptions or load changes) and reliability of supply. We explore the integration of advanced algorithms specifically tailored to enhance the Quality of Energy Services. By concentrating on key aspects—reliability, availability and operational efficiency—the study reviews how various algorithmic approaches, from machine learning models to classical optimisation techniques, can significantly improve power grid management. These algorithms are evaluated for their potential to optimise load distribution, predict system failures and manage real-time adjustments in power supply, thereby ensuring higher service quality and grid stability. The findings aim to provide actionable insights for policymakers, engineers and industry stakeholders seeking to advance smart grid technologies and meet global energy standards. Furthermore, we present a case study to demonstrate how these models can be integrated to optimise grid management, forecast energy demand and enhance operational efficiency. We employ multiple machine learning models—including Random Forest, XGBoost version 1.6.1 and Long Short-Term Memory (LSTM) networks—to predict future energy demand. These models are then combined within an ensemble learning framework to improve both the accuracy and robustness of the forecasts. Our ensemble framework not only predicts energy consumption but also optimises battery storage utilisation, ensuring continuous energy availability and reducing reliance on external energy sources. The proposed stacking ensemble achieved a forecasting accuracy of 99.06%, with a Mean Absolute Percentage Error (MAPE) of 0.9364% and a Coefficient of Determination (R 2 ) of 0.998345, highlighting its superior performance compared to each individual base model.

Suggested Citation

  • José M. Liceaga-Ortiz-De-La-Peña & Jorge A. Ruiz-Vanoye & Juan M. Xicoténcatl-Pérez & Ocotlán Díaz-Parra & Alejandro Fuentes-Penna & Ricardo A. Barrera-Cámara & Daniel Robles-Camarillo & Marco A. Márq, 2025. "Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services," Energies, MDPI, vol. 18(12), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3094-:d:1677243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crispim, João & Braz, José & Castro, Rui & Esteves, Jorge, 2014. "Smart Grids in the EU with smart regulation: Experiences from the UK, Italy and Portugal," Utilities Policy, Elsevier, vol. 31(C), pages 85-93.
    2. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    3. Verica Radisavljevic-Gajic & Dimitri Karagiannis & Zoran Gajic, 2023. "The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview," Energies, MDPI, vol. 16(24), pages 1-23, December.
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    6. Bishwajit Dey & Fausto Pedro García Márquez & Sourav Kr. Basak, 2020. "Smart Energy Management of Residential Microgrid System by a Novel Hybrid MGWOSCACSA Algorithm," Energies, MDPI, vol. 13(13), pages 1-23, July.
    7. Priyanka Mishra & Ghanshyam Singh, 2023. "Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    8. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    9. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    10. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    11. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    12. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    13. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    14. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    15. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    16. Nikolaos Kampelis & Nikolaos Sifakis & Dionysia Kolokotsa & Konstantinos Gobakis & Konstantinos Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2019. "HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response," Energies, MDPI, vol. 12(11), pages 1-23, June.
    17. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    18. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    19. Ng, Sylvia C. & Sweeney, Jillian C. & Plewa, Carolin, 2020. "Customer engagement: A systematic review and future research priorities," Australasian marketing journal, Elsevier, vol. 28(4), pages 235-252.
    20. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    21. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    22. Mohd Sakib & Tamanna Siddiqui & Suhel Mustajab & Reemiah Muneer Alotaibi & Nouf Mohammad Alshareef & Mohammad Zunnun Khan, 2025. "An ensemble deep learning framework for energy demand forecasting using genetic algorithm-based feature selection," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    4. Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    5. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    6. Rasmus Magni Johannsen & Poul Alberg Østergaard & David Maya-Drysdale & Louise Krog Elmegaard Mouritsen, 2021. "Designing Tools for Energy System Scenario Making in Municipal Energy Planning," Energies, MDPI, vol. 14(5), pages 1-17, March.
    7. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    8. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    9. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    10. Ahmed, Faraedoon & Foley, Aoife & McLoone, Sean & Best, Robert & Lund, Henrik & Al Kez, Dlzar, 2025. "Sectoral coupling pathway towards a 100 % renewable energy system for Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    11. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    12. Sameh Mahjoub & Sami Labdai & Larbi Chrifi-Alaoui & Bruno Marhic & Laurent Delahoche, 2023. "Short-Term Occupancy Forecasting for a Smart Home Using Optimized Weight Updates Based on GA and PSO Algorithms for an LSTM Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
    13. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    14. Kılkış, Şiir, 2023. "Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability," Energy, Elsevier, vol. 285(C).
    15. Falkoni, A. & Krajačić, G. & M Mimica, marko, 2024. "Model of a 100 % renewable energy system of self-sufficient wider urban area based on a short-term scale and the integration of the transport and thermal sector," Energy, Elsevier, vol. 305(C).
    16. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    17. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    18. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    19. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    20. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3094-:d:1677243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.