IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v169y2016icp250-266.html
   My bibliography  Save this article

Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings

Author

Listed:
  • Salata, Ferdinando
  • Golasi, Iacopo
  • di Salvatore, Maicol
  • de Lieto Vollaro, Andrea

Abstract

The necessity to reduce energy requirements of lighting systems should bring among engineers a more mature and conscious vision while planning and this means that their main goals should be the visual comfort and a decrease in energy and maintenance costs. Therefore this paper examines the case study of a classroom located in the Faculty of Engineering of Sapienza University in Rome and, to evaluate the possibility to combine natural and artificial light, it focuses on the realization of a new lighting system. This new solution is formed by LED sources and control systems able to modulate the power absorbed by every single lamp (to adapt, according to the hour and day, to the conditions of the natural light). In order to meet the EN 12464-1, the process of incorporating natural and artificial light must occur while guaranteeing both the minimum levels expected for the average illuminance Em [lx] and the uniformity coefficient (Emin/Em) and this is the reason why a simultaneous exertion of artificial lights and a variable shielding system of glass surfaces activated through a motorized electronic control unit is required. Thanks to the software DIALux Evo 5.1 a 3D model of the classroom was reproduced and validated in order to simulate the combination of natural and artificial lighting and to verify if the results complied with the regulations. This was followed by an analysis concerning: the reliability of the system (through the examination of the MTBF – Mean Time Between Failure) and energetic and economic aspects (through the software ecoCALC 4.5.4). The novelty of this study is represented by the fact that in order to obtain the highest results in each of the three fields examined, it is possible to avoid the exertion of those negative feedback control-type systems (requiring high installation and maintenance costs due to sensor devices), thanks to pre-programmed logic control systems based on the data obtained with the simulations by prediction softwares. In this case study the solution suggested, while using a pre-programmed control logic, presents a MTBF of 1205h (about twice of a negative feedback system solution) with payback periods that justify the higher costs presented by the electronic characterizing the control logic system with respect to traditional plant solutions.

Suggested Citation

  • Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
  • Handle: RePEc:eee:appene:v:169:y:2016:i:c:p:250-266
    DOI: 10.1016/j.apenergy.2016.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916301453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdinando Salata & Iacopo Golasi & Simone Bovenzi & Emanuele De Lieto Vollaro & Francesca Pagliaro & Lucia Cellucci & Massimo Coppi & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Energy Optimization of Road Tunnel Lighting Systems," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    2. Nikolaidis, Yiannis & Pilavachi, Petros A. & Chletsis, Alexandros, 2009. "Economic evaluation of energy saving measures in a common type of Greek building," Applied Energy, Elsevier, vol. 86(12), pages 2550-2559, December.
    3. Li, Danny H.W. & Tsang, Ernest K.W. & Cheung, K.L. & Tam, C.O., 2010. "An analysis of light-pipe system via full-scale measurements," Applied Energy, Elsevier, vol. 87(3), pages 799-805, March.
    4. Ahn, Byung-Lip & Jang, Cheol-Yong & Leigh, Seung-Bok & Yoo, Seunghwan & Jeong, Hakgeun, 2014. "Effect of LED lighting on the cooling and heating loads in office buildings," Applied Energy, Elsevier, vol. 113(C), pages 1484-1489.
    5. Ferdinando Salata & Iacopo Golasi & Giacomo Falanga & Marco Allegri & Emanuele De Lieto Vollaro & Fabio Nardecchia & Francesca Pagliaro & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Maintenance and Energy Optimization of Lighting Systems for the Improvement of Historic Buildings: A Case Study," Sustainability, MDPI, vol. 7(8), pages 1-19, August.
    6. Yang, Jui-Piao & Hsiao, Horng-Ching, 2007. "Design and testing of a separate-type lighting system using solar energy and cold-cathode fluorescent lamps," Applied Energy, Elsevier, vol. 84(1), pages 99-115, January.
    7. Wong, Irene & Yang, H.X., 2012. "Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system," Applied Energy, Elsevier, vol. 90(1), pages 225-232.
    8. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    9. Rahman, M.M. & Rasul, M.G. & Khan, M.M.K., 2010. "Energy conservation measures in an institutional building in sub-tropical climate in Australia," Applied Energy, Elsevier, vol. 87(10), pages 2994-3004, October.
    10. Ferdinando Salata & Iacopo Golasi & Emiliano Bombelli & Emanuele De Lieto Vollaro & Fabio Nardecchia & Francesca Pagliaro & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Case Study on Economic Return on Investments for Safety and Emergency Lighting in Road Tunnels," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
    11. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    12. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Optimal sampling plan for clean development mechanism energy efficiency lighting projects," Applied Energy, Elsevier, vol. 112(C), pages 1006-1015.
    13. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    14. Toshi H. Arimura, Shanjun Li, Richard G. Newell, and Karen Palmer, 2012. "Cost-Effectiveness of Electricity Energy Efficiency Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    15. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    16. Jenkins, David & Newborough, Marcus, 2007. "An approach for estimating the carbon emissions associated with office lighting with a daylight contribution," Applied Energy, Elsevier, vol. 84(6), pages 608-622, June.
    17. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    18. Min, Jihoon & Azevedo, Inês Lima & Hakkarainen, Pekka, 2015. "Assessing regional differences in lighting heat replacement effects in residential buildings across the United States," Applied Energy, Elsevier, vol. 141(C), pages 12-18.
    19. Khaled A. Al-Sallal, 2010. "Daylighting and visual performance: evaluation of classroom design issues in the UAE," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 5(4), pages 201-209, June.
    20. Krüger, Eduardo L. & Dorigo, Adriano Lucio, 2008. "Daylighting analysis in a public school in Curitiba, Brazil," Renewable Energy, Elsevier, vol. 33(7), pages 1695-1702.
    21. Dubin, Fred S., 1990. "Energy-efficient building design: Innovative HVAC, lighting, energy-management control, and fenestration," Applied Energy, Elsevier, vol. 36(1-2), pages 11-20.
    22. Wong, Irene & Choi, H.L. & Yang, H., 2012. "Simulation and experimental studies on natural lighting in enclosed lift lobbies of highrise residential buildings by remote source solar lighting," Applied Energy, Elsevier, vol. 92(C), pages 705-713.
    23. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    24. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    25. Al-Marwaee, Mohammed & Carter, David, 2006. "Tubular guidance systems for daylight: Achieved and predicted installation performances," Applied Energy, Elsevier, vol. 83(7), pages 774-788, July.
    26. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    27. Li, Danny H. W. & Lam, Joseph C., 2003. "An analysis of lighting energy savings and switching frequency for a daylit corridor under various indoor design illuminance levels," Applied Energy, Elsevier, vol. 76(4), pages 363-378, December.
    28. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Carla Balocco & Martina Cecchi & Giulia Volante, 2019. "Natural Lighting for Sustainability of Cultural Heritage Refurbishment," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    3. Yeh, Shih-Chuan, 2019. "High performance natural lighting system combined with SPSC," Renewable Energy, Elsevier, vol. 143(C), pages 226-232.
    4. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    5. Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    6. Débora Thomé Miranda & Douglas Barreto & Inês Flores-Colen, 2024. "An Evaluation of the Luminous Performance of a School Environment Integrating Artificial Lighting and Daylight," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
    7. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    8. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    9. Judit Lopez-Besora & Glòria Serra-Coch & Helena Coch & Antonio Isalgue, 2016. "Daylight Management in Mediterranean Cities: When Shortage Is Not the Issue," Energies, MDPI, vol. 9(9), pages 1-12, September.
    10. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    11. Jianhua Ding & Xinyi Zou & Murong Lv, 2023. "Influence of Opposing Exterior Window Geometry on the Carbon Emissions of Indoor Lighting under the Combined Effect of Natural Lighting and Artificial Lighting in the City of Shenyang, China," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    12. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    13. Federica Rosso & Anna Laura Pisello & Veronica Lucia Castaldo & Marco Ferrero & Franco Cotana, 2017. "On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts," Sustainability, MDPI, vol. 9(12), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    2. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    3. Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    4. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    5. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    6. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    7. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    8. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    9. Antonio Bracale & Pierluigi Caramia & Pietro Varilone & Paola Verde, 2019. "Probabilistic Estimation of the Energy Consumption and Performance of the Lighting Systems of Road Tunnels for Investment Decision Making," Energies, MDPI, vol. 12(8), pages 1-21, April.
    10. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    11. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    12. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    14. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    15. Anderson Diogo Spacek & João Mota Neto & Luciano Dagostin Biléssimo & Oswaldo Hideo Ando Junior & Gustavo Pedro De Freitas Neto & Rodrigo Da Silva Giansella & Marcus Vinícius Ferreira De Santana & Cel, 2017. "Proposal for an Experimental Methodology for Evaluation of Natural Lighting Systems Applied in Buildings," Energies, MDPI, vol. 10(7), pages 1-12, July.
    16. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    17. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    18. Ye, Xianming & Xia, Xiaohua & Zhang, Jiangfeng, 2013. "Optimal sampling plan for clean development mechanism energy efficiency lighting projects," Applied Energy, Elsevier, vol. 112(C), pages 1006-1015.
    19. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    20. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:169:y:2016:i:c:p:250-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.