IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp261-273.html
   My bibliography  Save this article

Lighting performance and electrical energy consumption of a virtual window prototype

Author

Listed:
  • Mangkuto, R.A.
  • Wang, S.
  • Meerbeek, B.W.
  • Aries, M.B.C.
  • van Loenen, E.J.

Abstract

This article discusses the design and evaluation of a virtual window prototype, built using arrays of LED tiles to simulate the light as well as the view of a window. Arrays of white light LED fixtures with adjustable colour temperatures were incorporated to provide direct light into the test room. Lighting performance was evaluated by measuring horizontal illuminance on the workplane, vertical illuminance on the observer’s eye plane, and luminance perceived by the observer at four vertical points. For estimating the electrical energy consumption, real-time power consumption of the entire system was measured, and three daily usage profile scenarios and two annual modes were considered. In addition, five locations were chosen to represent various climate types. The results show that under the maximum setting, the average workplane illuminance was 239lx for the test room used, whereas discomfort glare at the observer’s positions was classified as imperceptible. Patches of direct light on the side walls could be created as an intended effect from installing the direct light source arrays. Variation of average annual space availability within a given location as a function of usage profile is found to be very small; the values are however sensitive to the chosen criterion of workplane illuminance. Based on the designated daily usage profiles and annual modes, the normalised, total annual electrical energy consumption in all climate types is on average within the range of 0.63–0.79, relative to the total electrical energy consumed by the prototype when it constantly displays the maximum intensity setting.

Suggested Citation

  • Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:261-273
    DOI: 10.1016/j.apenergy.2014.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahn, Byung-Lip & Jang, Cheol-Yong & Leigh, Seung-Bok & Yoo, Seunghwan & Jeong, Hakgeun, 2014. "Effect of LED lighting on the cooling and heating loads in office buildings," Applied Energy, Elsevier, vol. 113(C), pages 1484-1489.
    2. Wong, Irene & Yang, H.X., 2012. "Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system," Applied Energy, Elsevier, vol. 90(1), pages 225-232.
    3. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    4. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    5. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    6. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    7. Gaul, Mirco, 2013. "A comparative study of small-scale rural energy service pathways for lighting, cooking and mechanical power," Applied Energy, Elsevier, vol. 101(C), pages 376-392.
    8. Jenkins, David & Newborough, Marcus, 2007. "An approach for estimating the carbon emissions associated with office lighting with a daylight contribution," Applied Energy, Elsevier, vol. 84(6), pages 608-622, June.
    9. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    10. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    11. Li, Danny H. W. & Lam, Joseph C., 2003. "An analysis of lighting energy savings and switching frequency for a daylit corridor under various indoor design illuminance levels," Applied Energy, Elsevier, vol. 76(4), pages 363-378, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    2. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    3. Pal, Sudip Kumar & Alanne, Kari & Jokisalo, Juha & Siren, Kai, 2016. "Energy performance and economic viability of advanced window technologies for a new Finnish townhouse concept," Applied Energy, Elsevier, vol. 162(C), pages 11-20.
    4. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    2. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    3. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    4. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    5. Lee, Naeun & Kim, Jonghun & Jang, Cheolyong & Sung, Yoondong & Jeong, Hakgeun, 2015. "Comparison of sensorless dimming control based on building modeling and solar power generation," Energy, Elsevier, vol. 81(C), pages 15-20.
    6. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    7. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    8. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    9. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    10. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    11. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    12. Chel, Arvind & Tiwari, G.N. & Chandra, Avinash, 2009. "A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 86(11), pages 2507-2519, November.
    13. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    14. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    15. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    16. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    17. Harmathy, Norbert & Magyar, Zoltán & Folić, Radomir, 2016. "Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement," Energy, Elsevier, vol. 114(C), pages 302-317.
    18. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    19. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    20. Sulee Bunjongjit & Atthapol Ngaopitakkul, 2018. "Feasibility Study and Impact of Daylight on Illumination Control for Energy-Saving Lighting Systems," Sustainability, MDPI, vol. 10(11), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:261-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.