IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1014-d104904.html
   My bibliography  Save this article

Proposal for an Experimental Methodology for Evaluation of Natural Lighting Systems Applied in Buildings

Author

Listed:
  • Anderson Diogo Spacek

    (Department of Mechanic and Automation, SATC, Beneficent Association of Santa Catarina Coal Industry, Street Pascoal Meller, 73, Criciúma-SC CEP 88805-380, Brazil)

  • João Mota Neto

    (Department of Mechanic and Automation, SATC, Beneficent Association of Santa Catarina Coal Industry, Street Pascoal Meller, 73, Criciúma-SC CEP 88805-380, Brazil)

  • Luciano Dagostin Biléssimo

    (Department of Mechanic and Automation, SATC, Beneficent Association of Santa Catarina Coal Industry, Street Pascoal Meller, 73, Criciúma-SC CEP 88805-380, Brazil)

  • Oswaldo Hideo Ando Junior

    (Department of Renewable Energies, UNILA, Federal University of Latin American Integration, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu-PR CEP 85866-000, Brazil)

  • Gustavo Pedro De Freitas Neto

    (Department of Mechanic and Automation, SATC, Beneficent Association of Santa Catarina Coal Industry, Street Pascoal Meller, 73, Criciúma-SC CEP 88805-380, Brazil)

  • Rodrigo Da Silva Giansella

    (Department of Mechanic and Automation, SATC, Beneficent Association of Santa Catarina Coal Industry, Street Pascoal Meller, 73, Criciúma-SC CEP 88805-380, Brazil)

  • Marcus Vinícius Ferreira De Santana

    (Hidroelectric Power Plant, BAESA, Energética Barra Grande S/A, Street Madre Benvenuta, 1168, Florianópolis-SC CEP 88035-000, Brazil)

  • Celia De Fraga Malfatti

    (Corrosion Research Department, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves, 9500, Porto Alegre-RS CEP 91501-970, Brazil)

Abstract

This work has the objective of developing a methodology for the evaluation of indoor natural lighting systems, which, with speed and practicality, provides from real conditions of use a reliable result about the quality and performance of the proposed system. The methodology is based on the construction of two real-size test environments, which will be subjected to a natural light system through reflexive tubes made from recycled material, and to a commercial system already certified and consolidated, creating the possibility of comparison. Furthermore, the data acquired in the test environments will be examined in light of the values of solar radiation obtained from a digital meteorological station, such that it is possible to stipulate the lighting capacity of the systems at different times of the year.

Suggested Citation

  • Anderson Diogo Spacek & João Mota Neto & Luciano Dagostin Biléssimo & Oswaldo Hideo Ando Junior & Gustavo Pedro De Freitas Neto & Rodrigo Da Silva Giansella & Marcus Vinícius Ferreira De Santana & Cel, 2017. "Proposal for an Experimental Methodology for Evaluation of Natural Lighting Systems Applied in Buildings," Energies, MDPI, vol. 10(7), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1014-:d:104904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Tsang, Ernest K.W. & Cheung, K.L. & Tam, C.O., 2010. "An analysis of light-pipe system via full-scale measurements," Applied Energy, Elsevier, vol. 87(3), pages 799-805, March.
    2. Al-Marwaee, Mohammed & Carter, David, 2006. "Tubular guidance systems for daylight: Achieved and predicted installation performances," Applied Energy, Elsevier, vol. 83(7), pages 774-788, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magda Sibley & Antonio Peña-García, 2020. "Flat Glass or Crystal Dome Aperture? A Year-Long Comparative Analysis of the Performance of Light Pipes in Real Residential Settings and Climatic Conditions," Sustainability, MDPI, vol. 12(9), pages 1-11, May.
    2. Genbao Liu & Tengfei Zhao & Hong Yan & Han Wu & Fuming Wang, 2022. "Evaluation of Urban Green Building Design Schemes to Achieve Sustainability Based on the Projection Pursuit Model Optimized by the Atomic Orbital Search," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    3. L. M. Fernández-Ahumada & J. Ramírez-Faz & R. López-Luque & A. Márquez-García & M. Varo-Martínez, 2019. "A Methodology for Buildings Access to Solar Radiation in Sustainable Cities," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    4. Antonio Peña-García & Ferdinando Salata & Iacopo Golasi, 2019. "Decrease of the Maximum Speed in Highway Tunnels as a Measure to Foster Energy Savings and Sustainability," Energies, MDPI, vol. 12(4), pages 1-11, February.
    5. Heangwoo Lee, 2020. "A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment," IJERPH, MDPI, vol. 17(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    2. Magda Sibley & Antonio Peña-García, 2020. "Flat Glass or Crystal Dome Aperture? A Year-Long Comparative Analysis of the Performance of Light Pipes in Real Residential Settings and Climatic Conditions," Sustainability, MDPI, vol. 12(9), pages 1-11, May.
    3. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    4. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    6. Cristina Baglivo & Marina Bonomolo & Paolo Maria Congedo, 2019. "Modeling of Light Pipes for the Optimal Disposition in Buildings," Energies, MDPI, vol. 12(22), pages 1-28, November.
    7. Darula, Stanislav & Kittler, Richard & Kocifaj, Miroslav, 2010. "Luminous effectiveness of tubular light-guides in tropics," Applied Energy, Elsevier, vol. 87(11), pages 3460-3466, November.
    8. Kocifaj, M., 2009. "Efficient tubular light guide with two-component glazing with Lambertian diffuser and clear glass," Applied Energy, Elsevier, vol. 86(7-8), pages 1031-1036, July.
    9. Janjai, Serm & Plaon, Piyanuch, 2011. "Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model," Applied Energy, Elsevier, vol. 88(3), pages 840-847, March.
    10. Freire, Roberto Zanetti & Mazuroski, Walter & Abadie, Marc Olivier & Mendes, Nathan, 2011. "Capacitive effect on the heat transfer through building glazing systems," Applied Energy, Elsevier, vol. 88(12), pages 4310-4319.
    11. Ondřej Šikula & Jitka Mohelníková & Josef Plášek, 2013. "Thermal CFD Analysis of Tubular Light Guides," Energies, MDPI, vol. 6(12), pages 1-18, December.
    12. Anderson Diogo Spacek & João Mota Neto & Luciano Dagostin Biléssimo & Oswaldo Hideo Ando Junior & Marcus Vinícius Ferreira de Santana & Celia De Fraga Malfatti, 2018. "Proposal of the Tubular Daylight System Using Acrylonitrile Butadiene Styrene (ABS) Metalized with Aluminum for Reflective Tube Structure," Energies, MDPI, vol. 11(1), pages 1-12, January.
    13. Mayhoub, M.S. & Elqattan, Ahmed A. & Algendy, Algendy S., 2021. "Experimental investigation of dust accumulation effect on the performance of tubular daylight guidance systems," Renewable Energy, Elsevier, vol. 169(C), pages 726-737.
    14. Li, Danny H.W. & Tsang, Ernest K.W. & Cheung, K.L. & Tam, C.O., 2010. "An analysis of light-pipe system via full-scale measurements," Applied Energy, Elsevier, vol. 87(3), pages 799-805, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1014-:d:104904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.