IDEAS home Printed from
   My bibliography  Save this article

Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases


  • Zhang, Pan
  • Ma, Ting
  • Li, Wei-Dong
  • Ma, Guang-Yu
  • Wang, Qiu-Wang


The waste heat of high temperature exhaust flue gases is widely distributed in many industrial processes. Recovery of waste heat is of great significance to energy saving and sustainability. In this paper, a novel high temperature heat exchanger with hybrid enhancement technologies is proposed to improve waste heat recovery efficiency based on the cascade recovery and utilization method. Algorithm for HTHE structural design and optimization is developed and verified according to the experimental results. Heat transfer and pressure drop performance of the proposed HTHE are estimated by using the algorithm. The results show that the effectiveness of the proposed HTHE increases as the gas temperature increases and mass flow rate decreases. Average effectiveness of the proposed HTHE and temperature of preheated air are 12.5% and 85.8 °C higher than those of traditional HTHE with additional 70.0% and 22.0% pressure drop on air and gas sides, respectively. The structural optimization of the proposed HTHE is carried out and it shows that the optimized HTHE has better heat transfer capacity and comprehensive performance under identical pressure drop, increasing effectiveness by 12.6% without enlarging pressure drop compared with the non-optimized HTHE.

Suggested Citation

  • Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:3-18
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Łopata, Stanisław & Ocłoń, Paweł, 2015. "Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger," Energy, Elsevier, vol. 92(P1), pages 100-116.
    2. Mehrgoo, Morteza & Amidpour, Majid, 2017. "Constructal design and optimization of a dual pressure heat recovery steam generator," Energy, Elsevier, vol. 124(C), pages 87-99.
    3. González-Gómez, P.A. & Petrakopoulou, F. & Briongos, J.V. & Santana, D., 2017. "Cost-based design optimization of the heat exchangers in a parabolic trough power plant," Energy, Elsevier, vol. 123(C), pages 314-325.
    4. Lotfi, Babak & Zeng, Min & Sundén, Bengt & Wang, Qiuwang, 2014. "3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators," Energy, Elsevier, vol. 73(C), pages 233-257.
    5. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
    6. Halıcı, Fethi & Taymaz, İmdat & Gündüz, Mehmet, 2001. "The effect of the number of tube rows on heat, mass and momentum transfer in flat-plate finned tube heat exchangers," Energy, Elsevier, vol. 26(11), pages 963-972.
    7. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    2. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).
    3. Jaber, Hassan & Khaled, Mahmoud & Lemenand, Thierry & Murr, Rabih & Faraj, Jalal & Ramadan, Mohamad, 2019. "Domestic thermoelectric cogeneration drying system: Thermal modeling and case study," Energy, Elsevier, vol. 170(C), pages 1036-1050.
    4. Oravec, Juraj & Bakošová, Monika & Galčíková, Lenka & Slávik, Michal & Horváthová, Michaela & Mészáros, Alajos, 2019. "Soft-constrained robust model predictive control of a plate heat exchanger: Experimental analysis," Energy, Elsevier, vol. 180(C), pages 303-314.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:3-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.