IDEAS home Printed from
   My bibliography  Save this article

3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators


  • Lotfi, Babak
  • Zeng, Min
  • Sundén, Bengt
  • Wang, Qiuwang


3D computational analysis was performed to investigate heat transfer and pressure drop characteristics of flow in SWFET (Smooth Wavy Fin-and-Elliptical Tube) heat exchanger with four new VGs (vortex generators), RTW (rectangular trapezoidal winglet), ARW (angle rectangular winglet), CARW (curved angle rectangular winglet) and WW (Wheeler wishbone). The numerical model was well validated with the available experimental results. Numerical results illustrate that vortex generators can bring about further heat transfer enhancement through careful adjustment of the position with respect to the elliptical tube, type and attack angle of vortex generators. The influences of the geometrical factors including attack angles of the winglets (αVG = 15∘,30∘,45∘,60∘ and 75°) and width/length aspect ratio (w/l = 0.5,1.0) of the Wheeler wishbones on enhancing the heat transfer performance of a smooth wavy fin heat exchanger with a three-row staggered elliptical tube bundle are investigated. A parametric study on the winglet vortex generators indicated that for the small attack angle, CARW vortex generators gives better thermohydraulic performance under the present conditions. The best thermal performance with winglet VGs in larger attack angle, was obtained at RTW VGs arrangement. For the SWFET heat exchangers, the WW VGs with w/l = 0.5 provide the best heat transfer performance.

Suggested Citation

  • Lotfi, Babak & Zeng, Min & Sundén, Bengt & Wang, Qiuwang, 2014. "3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators," Energy, Elsevier, vol. 73(C), pages 233-257.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:233-257
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kotcioglu, Isak & Caliskan, Sinan & Cansiz, Ahmet & Baskaya, Senol, 2010. "Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator," Energy, Elsevier, vol. 35(9), pages 3686-3695.
    2. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Łopata, Stanisław & Ocłoń, Paweł, 2015. "Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger," Energy, Elsevier, vol. 92(P1), pages 100-116.
    3. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    4. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-45, October.
    5. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    6. Khoshvaght-Aliabadi, M. & Sartipzadeh, O. & Alizadeh, A., 2015. "An experimental study on vortex-generator insert with different arrangements of delta-winglets," Energy, Elsevier, vol. 82(C), pages 629-639.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:233-257. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.