A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.05.075
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
- Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
- Zheng, X. & Wang, R.Z. & Ge, T.S. & Hu, L.M., 2015. "Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems," Energy, Elsevier, vol. 93(P1), pages 88-94.
- Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
- Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
- Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
- Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
- Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.
- Bui, D.T. & Vivekh, P. & Islam, M.R. & Chua, K.J., 2022. "Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification," Applied Energy, Elsevier, vol. 306(PB).
- Bui, T.D. & Chen, W.D. & Islam, M.R. & Zhao, D. & Chua, K.J., 2023. "Studying the performance of a pilot scale vacuum-based membrane dehumidifier," Applied Energy, Elsevier, vol. 351(C).
- Mustapha, Rasha & Zoughaib, Assaad & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Modified upright cup method for testing water vapor permeability in porous membranes," Energy, Elsevier, vol. 195(C).
- Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
- Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
- Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
- Fix, Andrew J. & Pamintuan, Bryan C. & Braun, James E. & Warsinger, David M., 2022. "Vapor-selective active membrane energy exchanger with mechanical ventilation and indoor air recirculation," Applied Energy, Elsevier, vol. 312(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
- Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
- Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
- Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Hua, Lingji & Wang, Ruzhu, 2022. "An exergy analysis and parameter optimization of solid desiccant heat pumps recovering the condensation heat for desiccant regeneration and heat transfer enhancement," Energy, Elsevier, vol. 238(PB).
- Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
- Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix," Energy, Elsevier, vol. 176(C), pages 493-504.
- Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
- Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
- Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
- Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
- Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
- Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
- Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
- Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
- Zhang, J.Y. & Ge, T.S. & Dai, Y.J. & Zhao, Y. & Wang, R.Z., 2017. "Experimental investigation on solar powered desiccant coated heat exchanger humidification air conditioning system in winter," Energy, Elsevier, vol. 137(C), pages 468-478.
- Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
More about this item
Keywords
Vacuum-based membrane dehumidification; Dehumidification energy efficiency; Coefficient of performance; Thermodynamic limit; Latent heat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:132:y:2017:i:c:p:106-115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.