IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124010475.html
   My bibliography  Save this article

Recent advancements in deep dehumidification technology: A review

Author

Listed:
  • Xie, Mingxi
  • Chen, Erjian
  • Huang, Guorui
  • Jia, Teng
  • Dai, Yanjun

Abstract

Comfort air conditioning systems generally provide supply air with a dew point temperature exceeding 5 °C and are widely used in building sectors. In industries and scientific research scenarios such as warehousing, pharmaceuticals, battery manufacturing, integrated circuit production, pneumatic equipment and certain laboratories, the demand for extremely dry air is rapidly increasing. The dew point of dry air may be required to be −40 °C or lower, consequently specific deep dehumidification technologies need to be applied to address the demand. This review summarizes the recent progress of deep dehumidification technologies. The principles of different dehumidification methods are initially introduced. Based on dehumidification and energy performance comparison, relevant deep dehumidification methods and the pros/cons are elaborated. Then, the characteristics and research status of different types of dehumidification materials are introduced, where several desiccants with great adsorption capacity and regeneration performance are reported. To achieve better dehumidification effect and energy efficiency, the study focuses on various deep dehumidification systems with an emphasis on multiple novel systems integrated with other refrigeration cycles or renewable energy. Finally, the limitations, key issues and research prospects of deep dehumidification are discussed. The study comprehensively reviews the research progress of deep dehumidification technologies in humidity demand, materials and system operation. This work aims to propose suggestions and recommendations for the development of deep dehumidification technologies with higher dehumidification efficiency and less energy consumption.

Suggested Citation

  • Xie, Mingxi & Chen, Erjian & Huang, Guorui & Jia, Teng & Dai, Yanjun, 2025. "Recent advancements in deep dehumidification technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010475
    DOI: 10.1016/j.rser.2024.115321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124010475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Shao, Z. & Wang, Z.G. & Poredoš, P. & Ge, T.S. & Wang, R.Z., 2023. "Highly efficient desiccant-coated heat exchanger-based heat pump to decarbonize rail transportation," Energy, Elsevier, vol. 271(C).
    3. Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
    4. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    5. Yuan, Yanping & Zhang, Haiquan & Yang, Fan & Zhang, Nan & Cao, Xiaoling, 2016. "Inorganic composite sorbents for water vapor sorption: A research progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 761-776.
    6. Guo, Jinyi & Bilbao, Jose I. & Sproul, Alistair B., 2020. "A novel solar cooling cycle – A ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures," Renewable Energy, Elsevier, vol. 162(C), pages 1273-1284.
    7. Qu, Ming & Abdelaziz, Omar & Gao, Zhiming & Yin, Hongxi, 2018. "Isothermal membrane-based air dehumidification: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4060-4069.
    8. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2018. "Review on substrate of solid desiccant dehumidification system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3236-3249.
    9. Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
    10. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    11. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    12. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    13. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    14. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
    15. Chai, Shaowei & Chen, Erjian & Xie, Mingxi & Zhao, Yao & Dai, Yanjun, 2022. "Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger," Energy, Elsevier, vol. 259(C).
    16. Yao, Ye, 2010. "Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1860-1873, September.
    17. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    19. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    20. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    21. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    22. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    23. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan, 2010. "Experimental investigation on possibility of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 87(7), pages 2266-2272, July.
    24. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    25. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    26. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    27. Yin, Yonggao & Zheng, Baojun & Yang, Can & Zhang, Xiaosong, 2015. "A proposed compressed air drying method using pressurized liquid desiccant and experimental verification," Applied Energy, Elsevier, vol. 141(C), pages 80-89.
    28. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    29. Liang, Jyun-De & Tsai, Lu-Kuan & Chai, Shaowei & Zhao, Yao & Chiang, Yuan-Ching & Dai, Yanjun & Chen, Sih-Li, 2023. "Experimental investigation and analysis of alumina/polymer/alginate composite desiccant materials," Energy, Elsevier, vol. 280(C).
    30. Kabeel, A.E., 2009. "Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications," Renewable Energy, Elsevier, vol. 34(1), pages 255-265.
    31. Xiao, Fu & Ge, Gaoming & Niu, Xiaofeng, 2011. "Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 88(1), pages 143-149, January.
    32. Lu, Junhui & Cao, Haishan & Li, JunMing, 2020. "Energy and cost estimates for separating and capturing CO2 from CO2/H2O using condensation coupled with pressure/vacuum swing adsorption," Energy, Elsevier, vol. 202(C).
    33. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    34. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    35. Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
    36. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix," Energy, Elsevier, vol. 176(C), pages 493-504.
    37. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    38. Zheng, X. & Wang, R.Z. & Ge, T.S. & Hu, L.M., 2015. "Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems," Energy, Elsevier, vol. 93(P1), pages 88-94.
    39. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    40. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    41. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    42. Lorpradit, Narit & Khunatorn, Yottana & Jaruwasupant, Nattawut & Shimpalee, Sirivatch, 2022. "Binary gas dehydration using molecular sieve 4A within the pressure-vacuum swing adsorption," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    3. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    5. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    7. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    8. Zhang, Yi & He, Fang & Wang, Yunfei & Li, Chengyu & Zhang, Guanmin & Zhou, Dan, 2025. "Recent advances, challenges and future prospects on frost-free air source heat pump technology with integrated solid desiccant dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    9. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    12. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix," Energy, Elsevier, vol. 176(C), pages 493-504.
    14. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    15. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    16. Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
    17. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    19. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    20. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124010475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.