IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011205.html
   My bibliography  Save this article

A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems

Author

Listed:
  • Luo, Jielin
  • Yang, Hongxing

Abstract

Liquid desiccant air-conditioning system (LDAS) becomes an attractive option for reducing the energy consumption of conventional air-conditioning systems. Despite lots of published papers on LDAS in various aspects, there is not yet a comprehensive and up-to-date review on the properties of liquid desiccants, while the selection of liquid desiccant plays essential role in the overall performance of LDAS. In this paper, a state-of-the-art review on the properties in regard of energy and environmental performance is delivered for present and potential liquid desiccants, including vapor–liquid equilibrium, specific heat capacity, safety concerns. The current situations and future concerns of liquid desiccant investigation can be obtained, while different kinds of liquid desiccant candidates can be compared and evaluated comprehensively. Existing liquid desiccant of halide salt faces severe drawback of corrosiveness in long-term use. Compared with existing liquid desiccants, the candidates of weak acid salt, ionic liquid and deep eutectic solvent behave low toxicity and friendly corrosiveness, whereas their weak moisture absorption ability, high cost or high viscosity is the bottleneck for further applications. Therefore, the mixture of them can be regarded as a promising candidate in LDAS applications, but the fundamental properties are urged to be measured. The work in this paper provides momentous reference and guidance for the exploration of new liquid desiccant as well as the evaluation of future prospect of LDAS.

Suggested Citation

  • Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011205
    DOI: 10.1016/j.apenergy.2022.119853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    2. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    3. Dong, Chuanshuai & Lu, Lin & Wen, Tao, 2018. "Investigating dehumidification performance of solar-assisted liquid desiccant dehumidifiers considering different surface properties," Energy, Elsevier, vol. 164(C), pages 978-994.
    4. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    5. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    6. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Performance characteristics of cross-flow membrane contactors for liquid desiccant systems," Applied Energy, Elsevier, vol. 141(C), pages 1-11.
    7. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    8. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    9. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    10. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    11. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    12. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    13. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    14. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    15. Idahosa, Love Odion & Akotey, Joseph Oscar, 2021. "A social constructionist approach to managing HVAC energy consumption using social norms – A randomised field experiment," Energy Policy, Elsevier, vol. 154(C).
    16. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    17. Chugh, Devesh & Gluesenkamp, Kyle & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling," Applied Energy, Elsevier, vol. 202(C), pages 746-754.
    18. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    19. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    20. Hassan, A.A.M. & Hassan, M. Salah, 2008. "Dehumidification of air with a newly suggested liquid desiccant," Renewable Energy, Elsevier, vol. 33(9), pages 1989-1997.
    21. Abdul-Wahab, S.A. & Zurigat, Y.H. & Abu-Arabi, M.K., 2004. "Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier," Energy, Elsevier, vol. 29(1), pages 19-34.
    22. Ayyagari, Veeresh & Hwang, Yunho & Kim, Jungho, 2021. "Design and development of potassium formate based atmospheric water harvester," Energy, Elsevier, vol. 221(C).
    23. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    24. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.
    25. Yao, Ye, 2010. "Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1860-1873, September.
    26. Mujahid Rafique, M. & Gandhidasan, P. & Rehman, Shafiqur & Al-Hadhrami, Luai M., 2015. "A review on desiccant based evaporative cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 145-159.
    27. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    28. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    29. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
    30. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
    31. Che, Chunwen & Yin, Yonggao, 2019. "A statistical thermodynamic model for prediction of vapor pressure of mixed liquid desiccants near saturated solubility," Energy, Elsevier, vol. 175(C), pages 798-809.
    32. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    33. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    34. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibghat Ullah & Muzaffar Ali, 2023. "Performance Assessment of Solar Desiccant Air Conditioning System under Multiple Controlled Climatic Zones of Pakistan," Energies, MDPI, vol. 16(19), pages 1-22, September.
    2. Hakima Necira & Mohamed Elhadi Matallah & Soumia Bouzaher & Waqas Ahmed Mahar & Atef Ahriz, 2024. "Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
    3. Li, Hongxuan & Zou, Tonghua & Han, Xiaowan & Dai, Baomin & Liu, Jia, 2023. "Numerical and experimental study on the regeneration performance of a liquid desiccant system coupled with rotating packed bed and vacuum," Applied Energy, Elsevier, vol. 336(C).
    4. Luo, Jielin & Yang, Hongxing, 2023. "Investigations on a bubble-pump-aided diffusion absorption heat transformer using deep eutectic solvent for harvesting and upgrading thermal energy," Applied Energy, Elsevier, vol. 340(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    3. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    5. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    7. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    8. Kashish Kumar & Alok Singh & Saboor Shaik & C Ahamed Saleel & Abdul Aabid & Muneer Baig, 2022. "Comparative Analysis on Dehumidification Performance of KCOOH–LiCl Hybrid Liquid Desiccant Air-Conditioning System: An Energy-Saving Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    9. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    10. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    11. Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
    12. Harrouz, Jean Paul & Ghali, Kamel & Keniar, Khoudor & Ghaddar, Nesreen, 2023. "Numerical and experimental investigation of thermosyphon-driven liquid desiccant loop performance for sustainable indoor humidity removal," Applied Energy, Elsevier, vol. 343(C).
    13. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    14. Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
    15. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    16. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    17. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    18. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    19. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
    20. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.