IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121001040.html
   My bibliography  Save this article

A review on integration and design of desiccant air-conditioning systems for overall performance improvements

Author

Listed:
  • Gao, D.C.
  • Sun, Y.J.
  • Ma, Z.
  • Ren, H.

Abstract

With independent temperature and humidity control, desiccant air-conditioning (DAC) systems have multi-aspect advantages (e.g., high-efficiency moisture control, no ozone-depleting coolants use and easy renewable integration etc.) compared with conventional vapor-compression cooling systems, thereby attracting increasingly more research attention. Recently, many studies have been conducted to improve DAC system overall performance by integrating various energy sub-systems/technologies, improving system configurations and optimizing system designs and controls. This study, therefore, provides a timely and systematic review on the abovementioned studies. The study first overviews three typical DAC system configurations, their operating processes, and the commonly used performance indicators. Second, the study summarizes the main integration approaches of DAC systems. Detailed comparative analysis has been provided regarding these integration approaches. Third, the study presents the DAC system configuration improvements in four main categories, and comparatively analyzes their performance enhancements. Last, the study briefly reviews the DAC system design and control optimizations. Meanwhile, based on the DAC system latest developments, the study provides discussions on pressing issues and recommendations for future works. The study can help improve the understanding of the latest developments on DAC system integration and design for overall performance improvements. Associated discussions and recommendations may help focus the needed efforts on solving the pressing issues and outstanding problems, thereby leading to DAC system further performance improvements.

Suggested Citation

  • Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121001040
    DOI: 10.1016/j.rser.2021.110809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121001040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    2. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    3. Sun, Fangtian & Li, Junlong & Fu, Lin & Li, Yonghong & Wang, Ruixiang & Zhang, Shigang, 2020. "New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens," Energy, Elsevier, vol. 193(C).
    4. Zhang, Li-Zhi & Zhang, Ning, 2014. "A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation," Energy, Elsevier, vol. 65(C), pages 441-451.
    5. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    6. Sheng, Ying & Zhang, Yufeng & Zhang, Ge, 2015. "Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system," Energy, Elsevier, vol. 83(C), pages 583-596.
    7. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    8. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    9. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    10. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    11. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    12. Alelyani, Sami M. & Sherbeck, Jonathan A. & Fette, Nicholas W. & Wang, Yuqian & Phelan, Patrick E., 2018. "Assessment of a novel heat-driven cycle to produce shaft power and refrigeration," Applied Energy, Elsevier, vol. 215(C), pages 751-764.
    13. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    14. Hands, Stuart & Sethuvenkatraman, Subbu & Peristy, Mark & Rowe, Daniel & White, Stephen, 2016. "Performance analysis & energy benefits of a desiccant based solar assisted trigeneration system in a building," Renewable Energy, Elsevier, vol. 85(C), pages 865-879.
    15. Safizadeh, M. Reza & Morgenstern, Alexander & Bongs, Constanze & Henning, Hans-Martin & Luther, Joachim, 2016. "Optimization of a heat assisted air-conditioning system comprising membrane and desiccant technologies for applications in tropical climates," Energy, Elsevier, vol. 101(C), pages 52-64.
    16. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    17. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    18. Speerforck, Arne & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard & Schmitz, Gerhard, 2017. "Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system," Energy, Elsevier, vol. 141(C), pages 2321-2336.
    19. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    20. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    21. Wei, Maolin & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2018. "Summer performance analysis of coal-based CCHP with new configurations comparing with separate system," Energy, Elsevier, vol. 143(C), pages 104-113.
    22. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
    23. Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
    24. Fong, K.F. & Lee, C.K., 2014. "Performance advancement of solar air-conditioning through integrated system design for building," Energy, Elsevier, vol. 73(C), pages 987-996.
    25. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    26. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    27. Peci, F. & Comino, F. & Ruiz de Adana, M., 2018. "Performance of an unglazed transpire collector in the facade of a building for heating and cooling in combination with a desiccant evaporative cooler," Renewable Energy, Elsevier, vol. 122(C), pages 460-471.
    28. Wang, H.H. & Ge, T.S. & Zhang, X.L. & Zhao, Y., 2016. "Experimental investigation on solar powered self-cooled cooling system based on solid desiccant coated heat exchanger," Energy, Elsevier, vol. 96(C), pages 176-186.
    29. Baniyounes, Ali M. & Liu, Gang & Rasul, M.G. & Khan, M.M.K., 2013. "Comparison study of solar cooling technologies for an institutional building in subtropical Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 421-430.
    30. Su, Bosheng & Han, Wei & Sui, Jun & Jin, Hongguang, 2017. "A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications," Applied Energy, Elsevier, vol. 207(C), pages 643-653.
    31. Guan, Bowen & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions for the optimal cooling and heating source temperatures in liquid desiccant air-conditioning system based on exergy analysis," Energy, Elsevier, vol. 203(C).
    32. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2018. "Investigation on solar assisted liquid desiccant dehumidifier and evaporative cooling system for fresh air treatment," Energy, Elsevier, vol. 143(C), pages 114-127.
    33. Hua, L.J. & Ge, T.S. & Wang, R.Z., 2019. "Extremely high efficient heat pump with desiccant coated evaporator and condenser," Energy, Elsevier, vol. 170(C), pages 569-579.
    34. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    35. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    36. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    37. Francesco Calise & Laura Vanoli, 2012. "Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model," Energies, MDPI, vol. 5(10), pages 1-23, October.
    38. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    39. Chen, Liu & Tan, Yikun, 2020. "The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source," Renewable Energy, Elsevier, vol. 146(C), pages 2142-2157.
    40. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    41. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    42. Zhang, Qinling & Liu, Xiaohua & Zhang, Tao & Xie, Ying, 2020. "Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis," Energy, Elsevier, vol. 204(C).
    43. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    44. Wang, Yingying & Fan, Ying & Wang, Dengjia & Liu, Yanfeng & Qiu, Zhenghao & Liu, Jiaping, 2020. "Optimization of the areas of solar collectors and photovoltaic panels in liquid desiccant air-conditioning systems using solar energy in isolated low-latitude islands," Energy, Elsevier, vol. 198(C).
    45. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    46. Cheon, Seong-Yong & Lim, Hansol & Jeong, Jae-Weon, 2019. "Applicability of thermoelectric heat pump in a dedicated outdoor air system," Energy, Elsevier, vol. 173(C), pages 244-262.
    47. Li, Xian & Kan, Xiang & Sun, Xiangyu & Zhao, Yao & Ge, Tianshu & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification," Energy, Elsevier, vol. 176(C), pages 961-979.
    48. Xu, F. & Bian, Z.F. & Ge, T.S. & Dai, Y.J. & Wang, C.H. & Kawi, S., 2019. "Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework," Energy, Elsevier, vol. 177(C), pages 211-221.
    49. Jradi, M. & Riffat, S., 2014. "Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit," Energy, Elsevier, vol. 71(C), pages 80-93.
    50. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2015. "Performance of two-stage rotary desiccant cooling system with different regeneration temperatures," Energy, Elsevier, vol. 80(C), pages 556-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    3. Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
    4. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    5. Luo, Jielin & Shen, Yongting & Yang, Hongxing, 2024. "Investigations on an integrated air-conditioning system using technologies of desiccant dehumidification, indirect evaporative cooling and CO2 capture," Applied Energy, Elsevier, vol. 369(C).
    6. Cai, Shanshan & Li, Xu & Yang, Ling & Hua, Zhipeng & Li, Song & Tu, Zhengkai, 2024. "Demand flexibility and its impact on a PEM fuel cell-based integrated energy supply system with humidity control," Renewable Energy, Elsevier, vol. 228(C).
    7. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    8. Su, Minqi & Han, Xiaoqu & Dai, Yanbing & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2024. "Investigation on recirculated regenerative solid desiccant-assisted dehumidification system: Impact of system configurations and desiccant materials," Energy, Elsevier, vol. 286(C).
    9. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    7. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    8. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    9. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Hua, Lingji & Wang, Ruzhu, 2022. "An exergy analysis and parameter optimization of solid desiccant heat pumps recovering the condensation heat for desiccant regeneration and heat transfer enhancement," Energy, Elsevier, vol. 238(PB).
    14. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    15. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    16. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    17. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    18. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    19. Shao, Z. & Wang, Z.G. & Poredoš, P. & Ge, T.S. & Wang, R.Z., 2023. "Highly efficient desiccant-coated heat exchanger-based heat pump to decarbonize rail transportation," Energy, Elsevier, vol. 271(C).
    20. Dai, Yuze & Liu, Feng & Sui, Jun & Wang, Dandan & Han, Wei & Jin, Hongguang, 2020. "Hybrid liquid desiccant air-conditioning system combined with marine aerosol removal driven by low-temperature heat source," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121001040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.