IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1562-1574.html
   My bibliography  Save this article

Performance analysis of a two-stage desiccant cooling system

Author

Listed:
  • Tu, Rang
  • Liu, Xiao-Hua
  • Jiang, Yi

Abstract

Multi-stage desiccant systems are an effective way to improve the performance of desiccant dehumidification systems, which can greatly decrease the required regeneration temperature and make possible the utilization of exhaust heat from the heat pump. The performance of a heat pump-driven two-stage desiccant wheel system is analyzed in this paper. Models of the desiccant wheel and heat pump systems are utilized to predict system performance. The effects on system performance of the compressor power input, the heat exchange area distribution between evaporators and condensers, the wheel’s rotation speed, and the inlet parameters of the processed air are investigated. When the supplied air humidity ratio is 10g/kg, COPt of the desiccant system is 5.5 under Beijing summer condition. The key to improving system performance is to match the cooling capacity and exhaust heat provided by the heat pump with the requirements of dehumidification and regeneration. An improved system utilizing an indirect cooler to recover the cooling capacity from the indoor exhaust air is then proposed, with COPt improving by 15% compared to the original system.

Suggested Citation

  • Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1562-1574
    DOI: 10.1016/j.apenergy.2013.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2013. "Performance analysis of a new kind of heat pump-driven outdoor air processor using solid desiccant," Renewable Energy, Elsevier, vol. 57(C), pages 101-110.
    3. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    4. Enteria, Napoleon & Yoshino, Hiroshi & Satake, Akira & Mochida, Akashi & Takaki, Rie & Yoshie, Ryuichiro & Baba, Seizo, 2010. "Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production," Applied Energy, Elsevier, vol. 87(2), pages 478-486, February.
    5. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    6. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    7. Babus'Haq, R. F. & Olsen, H. & Probert, S. D., 1996. "Feasibility of using an integrated small-scale CHP unit plus desiccant wheel in a leisure complex," Applied Energy, Elsevier, vol. 53(1-2), pages 179-192.
    8. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    9. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    2. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    3. Jagirdar, Mrinal & Lee, Poh Seng, 2018. "Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger," Applied Energy, Elsevier, vol. 212(C), pages 401-415.
    4. Liu, Xiao-Hua & Zhang, Tao & Zheng, Yu-Wei & Tu, Rang, 2016. "Performance investigation and exergy analysis of two-stage desiccant wheel systems," Renewable Energy, Elsevier, vol. 86(C), pages 877-888.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    6. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Zhang, Guiying & Tian, Changqing & Shao, Shuangquan, 2014. "Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant," Applied Energy, Elsevier, vol. 136(C), pages 1010-1017.
    8. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    9. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    10. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    11. Zhang, Zi-Yang & Cao, Xiang & Yang, Zhi & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Modeling and experimental investigation of an advanced direct-expansion outdoor air dehumidification system," Applied Energy, Elsevier, vol. 242(C), pages 1600-1612.
    12. Japheth Abdulazeez Yaya, 2018. "The Essentiality of Motivation on Librarians Productivity in Nigerian Public Universities," Asian Journal of Contemporary Education, Asian Economic and Social Society, vol. 2(1), pages 19-35, March.
    13. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
    14. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Fu, Huang-Xi & Zhang, Li-Zhi & Xu, Jian-Chang & Cai, Rong-Rong, 2016. "A dual-scale analysis of a desiccant wheel with a novel organic–inorganic hybrid adsorbent for energy recovery," Applied Energy, Elsevier, vol. 163(C), pages 167-179.
    16. Cui, X. & Chua, K.J. & Yang, W.M., 2014. "Numerical simulation of a novel energy-efficient dew-point evaporative air cooler," Applied Energy, Elsevier, vol. 136(C), pages 979-988.
    17. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    18. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
    19. B. Kiran Naik & Mullapudi Joshi & Palanisamy Muthukumar & Muhammad Sultan & Takahiko Miyazaki & Redmond R. Shamshiri & Hadeed Ashraf, 2020. "Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    20. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    21. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    22. Ghiaus, Christian, 2014. "Linear algebra solution to psychometric analysis of air-conditioning systems," Energy, Elsevier, vol. 74(C), pages 555-566.
    23. Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
    24. Sheng, Ying & Zhang, Yufeng & Zhang, Ge, 2015. "Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system," Energy, Elsevier, vol. 83(C), pages 583-596.
    25. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    2. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
    3. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    4. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    5. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    6. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    7. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    8. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    9. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Kang, Hyungmook & Lee, Dae-Young, 2017. "Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels," Energy, Elsevier, vol. 120(C), pages 705-717.
    11. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
    12. Abou-Ziyan, H. & Abd El-Raheim, D. & Mahmoud, O. & Fatouh, M., 2017. "Performance characteristics of thin-multilayer activated alumina bed," Applied Energy, Elsevier, vol. 190(C), pages 29-42.
    13. Ruivo, Celestino R. & Angrisani, Giovanni & Minichiello, Francesco, 2015. "Influence of the rotation speed on the effectiveness parameters of a desiccant wheel: An assessment using experimental data and manufacturer software," Renewable Energy, Elsevier, vol. 76(C), pages 484-493.
    14. Chen, Liu & Tan, Yikun, 2020. "The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source," Renewable Energy, Elsevier, vol. 146(C), pages 2142-2157.
    15. Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
    16. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    17. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    18. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    19. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    20. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1562-1574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.