Optimizing air conditioning systems by considering the grades of sensible and latent heat loads
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119458
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
- Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
- Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2018. "NTUm-based optimization of heat or heat pump driven liquid desiccant dehumidification systems regenerated by fresh air or return air," Energy, Elsevier, vol. 158(C), pages 269-280.
- Su, Bosheng & Han, Wei & Sui, Jun & Jin, Hongguang, 2017. "A two-stage liquid desiccant dehumidification system by the cascade utilization of low-temperature heat for industrial applications," Applied Energy, Elsevier, vol. 207(C), pages 643-653.
- Zhang, Qinling & Liu, Xiaohua & Zhang, Tao & Xie, Ying, 2020. "Performance optimization of a heat pump driven liquid desiccant dehumidification system using exergy analysis," Energy, Elsevier, vol. 204(C).
- Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
- Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
- Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
- Tu, Rang & Liu, Xiao-Hua & Jiang, Yi & Ma, Fei, 2015. "Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis," Energy, Elsevier, vol. 85(C), pages 379-391.
- Liang, Jyun-De & Huang, Bo-Hao & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "Experimental investigation of a liquid desiccant dehumidification system integrated with shallow geothermal energy," Energy, Elsevier, vol. 191(C).
- Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
- Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
- Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Huan & Liang, Chenjiyu & Wang, Guijin & Li, Xianting, 2024. "Energy-saving potential of fresh air management using camera-based indoor occupancy positioning system in public open space," Applied Energy, Elsevier, vol. 356(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
- Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
- Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
- Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Giampieri, A. & Ma, Z. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2022. "An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing," Energy, Elsevier, vol. 244(PA).
- Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
- Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
- Yang, Zili & Tao, Ruiyang & Chen, Lu-An & Zhong, Ke & Chen, Bin, 2020. "Feasibility study on improving the performance of atomization liquid desiccant dehumidifier with standing-wave ultrasound," Energy, Elsevier, vol. 205(C).
- Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
- Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Zhang, Lun & Song, Xia & Zhang, Xiaosong, 2019. "Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution," Energy, Elsevier, vol. 187(C).
- Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
- Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
- Kumar, Ritunesh & Khan, Rehan & Ma, Zhenjun, 2021. "Suitability of plate versus cylinder surface for the development of low flow falling film liquid desiccant dehumidifiers," Renewable Energy, Elsevier, vol. 179(C), pages 723-736.
- Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Li, Hongxuan & Zou, Tonghua & Han, Xiaowan & Dai, Baomin & Liu, Jia, 2023. "Numerical and experimental study on the regeneration performance of a liquid desiccant system coupled with rotating packed bed and vacuum," Applied Energy, Elsevier, vol. 336(C).
- Farah G. Fahad & Shurooq T. Al-Humairi & Amged T. Al-Ezzi & Hasan Sh. Majdi & Abbas J. Sultan & Thaqal M. Alhuzaymi & Thaar M. Aljuwaya, 2023. "Advancements in Liquid Desiccant Technologies: A Comprehensive Review of Materials, Systems, and Applications," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
- Sebastian Englart & Krzysztof Rajski, 2021. "Performance Investigation of a Hollow Fiber Membrane-Based Desiccant Liquid Air Dehumidification System," Energies, MDPI, vol. 14(11), pages 1-20, June.
- Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
More about this item
Keywords
Air treatment process; Load grade; Air conditioning; Liquid desiccant; Natural energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007863. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.