Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111815
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Nan & Chen, Xiangjie & Su, Yuehong & Zheng, Hongfei & Ramadan, Omar & Zhang, Xingxing & Chen, Hongbin & Riffat, Saffa, 2019. "Numerical investigations and performance comparisons of a novel cross-flow hollow fiber integrated liquid desiccant dehumidification system," Energy, Elsevier, vol. 182(C), pages 1115-1131.
- Cheng, Qing & Xu, Wenhao, 2017. "Performance analysis of a novel multi-function liquid desiccant regeneration system for liquid desiccant air-conditioning system," Energy, Elsevier, vol. 140(P1), pages 240-252.
- Pei, Wang & Cheng, Qing & Jiao, Shun & Liu, Lin, 2019. "Performance evaluation of the electrodialysis regenerator for the lithium bromide solution with high concentration in the liquid desiccant air-conditioning system," Energy, Elsevier, vol. 187(C).
- Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
- Liang, Jyun-De & Huang, Bo-Hao & Chiang, Yuan-Ching & Chen, Sih-Li, 2020. "Experimental investigation of a liquid desiccant dehumidification system integrated with shallow geothermal energy," Energy, Elsevier, vol. 191(C).
- Zhou, Junming & Wang, Faming & Noor, Nuruzzaman & Zhang, Xiaosong, 2020. "An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation," Energy, Elsevier, vol. 194(C).
- Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
- Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
- Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
- Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
- Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
- Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
- Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
- Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
- Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
- Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
- Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
- Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
- Theo Elmer & Mark Worall & Shenyi Wu & Saffa Riffat, 2017. "Experimental evaluation of a liquid desiccant air conditioning system for tri-generation/waste-heat-driven applications," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 110-125.
- Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
- Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
- Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Niu, Xiaofeng & Ke, Qing & Wang, Zhaohua & Zhou, Junming & Dong, Honglin & Mahian, Omid, 2023. "Study on the regeneration process and overall performance of a microencapsulated phase change material slurry dehumidification system," Renewable Energy, Elsevier, vol. 216(C).
- Hong, Wenpeng & Mu, Yuhan & Lan, Jingrui & Jin, Xu & Wang, Xinzhi & Li, Haoran, 2024. "Improving vapor condensation via copper foam in capillary-fed photovoltaic membrane distillation," Energy, Elsevier, vol. 296(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
- Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
- Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
- Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Kashish Kumar & Alok Singh & Saboor Shaik & C Ahamed Saleel & Abdul Aabid & Muneer Baig, 2022. "Comparative Analysis on Dehumidification Performance of KCOOH–LiCl Hybrid Liquid Desiccant Air-Conditioning System: An Energy-Saving Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
- Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
- Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
- Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
- Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
- Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
- Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
- Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
- Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
- Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
- Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
- Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
- Guan, Bowen & Zhang, Tao & Jun, Liu & Liu, Xiaohua, 2020. "Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study," Energy, Elsevier, vol. 196(C).
- Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
- Qing Cheng & Han Wang & Lin Zhu & Yao Chen, 2023. "A current efficiency model coupled with desiccant molecular weight for electrodialysis regeneration in liquid desiccant air-conditioning systems," Energy & Environment, , vol. 34(4), pages 909-926, June.
More about this item
Keywords
Desalination; Liquid desiccant; Nanofiltration; Membrane distillation; Solar;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010832. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.