IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v130y2014icp491-499.html
   My bibliography  Save this article

Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production

Author

Listed:
  • Zaragoza, G.
  • Ruiz-Aguirre, A.
  • Guillén-Burrieza, E.

Abstract

The demand of freshwater has surpassed the renewable limit and new water sources are associated with an intensive use of energy. Coincidence between scarcity of water and availability of solar radiation makes solar energy the most suitable option to mitigate the water deficit. This paper analyzes the use of energy for decentralized water production using membrane desalination systems fed with solar energy. An analysis is performed based on experimental results from the most advanced commercial prototypes of different technologies of membrane distillation using various configurations, i.e., air-gap, permeate-gap and vacuum; with flat-plate and spiral-wound membranes. The systems operate with thermal energy, although there is some electrical consumption for pumping and in some cases for sustaining vacuum. The thermal energy requirements per unit volume of water produced are assessed in each case, considering the effect of different operational conditions like the temperature regime and the salinity of the input water.

Suggested Citation

  • Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
  • Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:491-499
    DOI: 10.1016/j.apenergy.2014.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    2. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    3. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Juan D. Gil & Jerónimo Ramos-Teodoro & José A. Romero-Ramos & Rodrigo Escobar & José M. Cardemil & Cynthia Giagnocavo & Manuel Pérez, 2021. "Demand-Side Optimal Sizing of a Solar Energy–Biomass Hybrid System for Isolated Greenhouse Environments: Methodology and Application Example," Energies, MDPI, vol. 14(13), pages 1-22, June.
    5. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Gil, Juan D. & Mendes, Paulo R.C. & Camponogara, E. & Roca, Lidia & Álvarez, J.D. & Normey-Rico, Julio E., 2020. "A general optimal operating strategy for commercial membrane distillation facilities," Renewable Energy, Elsevier, vol. 156(C), pages 220-234.
    7. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    8. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    9. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    10. Gil, Juan D. & Roca, Lidia & Zaragoza, Guillermo & Berenguel, Manuel, 2018. "A feedback control system with reference governor for a solar membrane distillation pilot facility," Renewable Energy, Elsevier, vol. 120(C), pages 536-549.
    11. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    12. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    13. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    14. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    15. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    16. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    17. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    18. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    19. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    20. Xu, Ning & Ji, Jie & Sun, Wei & Huang, Wenzhu & Li, Jing & Jin, Zhuling, 2016. "Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens," Applied Energy, Elsevier, vol. 168(C), pages 269-281.
    21. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    2. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    3. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    4. Yong-Joon Jun & Young-Hak Song & Kyung-Soon Park, 2017. "A Study on the Prediction of the Optimum Performance of a Small-Scale Desalination System Using Solar Heat Energy," Energies, MDPI, vol. 10(9), pages 1-16, August.
    5. Lidia Roca & Jorge A. Sánchez & Francisco Rodríguez & Javier Bonilla & Alberto De la Calle & Manuel Berenguel, 2016. "Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand," Energies, MDPI, vol. 9(3), pages 1-17, March.
    6. Alhazmy, Majed M., 2014. "Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling," Energy, Elsevier, vol. 76(C), pages 1029-1035.
    7. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    8. Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
    9. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    10. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    11. Liu, Zhen-hua & Hu, Ren-Lin & Chen, Xiu-juan, 2014. "A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes," Renewable Energy, Elsevier, vol. 64(C), pages 26-33.
    12. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    13. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    14. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    15. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    16. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Md. Nazmul Aunsary & Bo-Ching Chen, 2019. "Sustainable Water Treatment Management," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(2), pages 11-13, October.
    18. Choi, Soon-Ho, 2017. "Thermal type seawater desalination with barometric vacuum and solar energy," Energy, Elsevier, vol. 141(C), pages 1332-1349.
    19. Bhardwaj, R. & ten Kortenaar, M.V. & Mudde, R.F., 2015. "Maximized production of water by increasing area of condensation surface for solar distillation," Applied Energy, Elsevier, vol. 154(C), pages 480-490.
    20. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:130:y:2014:i:c:p:491-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.