IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i5d10.1007_s10668-023-04299-2.html
   My bibliography  Save this article

Seasonal dynamic modeling and simulation of solar thermal membrane desalination system for sustainable freshwater production: a case study of Tanta, Egypt

Author

Listed:
  • S. A. El-Agouz

    (Tanta University
    Delta Technological University)

  • Ayman Refat Abd Elbar

    (Tanta University)

  • Mohamed E. Zayed

    (Tanta University)

  • Ali M. Aboghazala

    (Tanta University)

  • Mohamed Z. Khatab

    (Tanta University)

  • M. Y. Zakaria

    (Military Technical College)

  • Khaled Khodary Esmaeil

    (Tanta University)

Abstract

Membrane distillation (MD) is an effective process for desalinating seawater, combining the merits of both thermal and membrane distillation. In this context, the sizing methodologies and optimization strategies are developed from the balance of the system’s energy demand. Therefore, accurate numerical modeling of the heat transfer and thermodynamic behavior of the MD systems is crucial for the optimal design of solar-based MD systems. The interest in utilizing solar thermal heating techniques for feed water heating in MD systems is increasing worldwide for sustainable freshwater production and lowering energy consumption. Hence, in this research, a coupled analytical modeling based on heat transfer, mass transport, and thermodynamic analysis is created to dynamically simulate a solar direct contact membrane distillation system (SDCMDS) driven by vacuumed tubes solar collectors (VTSCs) to analyze its performance, under real weather of Tanta, Egypt. The influences of the solar collecting area on the performances of the proposed SDCMDS for augmenting the freshwater production of the SDCMDS are studied. Four cases of the proposed SDCMDS are investigated: two identical VTSCs of 1.80 m2 each unit in summer (Case I), two identical VTSCs in winter (Case II), four identical VTSCs in summer (Case III), and four identical VTSCs in winter (Case IV). The results show that the utilization of four VTSCs connected in series significantly improved the feed seawater temperature range from 30.0 to 70.5 °C compared to a feed temperature range of 30.0–49.5 was achievable by utilizing only two VTSCs. Moreover, the daily averaged permeate flux were 2.21, 1.29, 3.41, and 2.07 L/day per m2 of solar harvesting area with daily cumulative distilled water yield of 7.48, 4.60, 23.04, and 14.78 L/day for Cases I, II, III, and IV, respectively, at a saline flowrate of 0.20 kg/s. The daily average total efficiency of the SDCMDS was obtained to be 14.70%, 12.50%, 24.95%, and 22.50% for Cases I, II, III, and IV, respectively.

Suggested Citation

  • S. A. El-Agouz & Ayman Refat Abd Elbar & Mohamed E. Zayed & Ali M. Aboghazala & Mohamed Z. Khatab & M. Y. Zakaria & Khaled Khodary Esmaeil, 2025. "Seasonal dynamic modeling and simulation of solar thermal membrane desalination system for sustainable freshwater production: a case study of Tanta, Egypt," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10083-10108, May.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04299-2
    DOI: 10.1007/s10668-023-04299-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04299-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04299-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    2. Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    2. Gil, Juan D. & Mendes, Paulo R.C. & Camponogara, E. & Roca, Lidia & Álvarez, J.D. & Normey-Rico, Julio E., 2020. "A general optimal operating strategy for commercial membrane distillation facilities," Renewable Energy, Elsevier, vol. 156(C), pages 220-234.
    3. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    4. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    5. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    6. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    7. Juan D. Gil & Jerónimo Ramos-Teodoro & José A. Romero-Ramos & Rodrigo Escobar & José M. Cardemil & Cynthia Giagnocavo & Manuel Pérez, 2021. "Demand-Side Optimal Sizing of a Solar Energy–Biomass Hybrid System for Isolated Greenhouse Environments: Methodology and Application Example," Energies, MDPI, vol. 14(13), pages 1-22, June.
    8. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    9. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    11. Adnan Alhathal Alanezi & Mohammad Reza Safaei & Marjan Goodarzi & Yasser Elhenawy, 2020. "The Effect of Inclination Angle and Reynolds Number on the Performance of a Direct Contact Membrane Distillation (DCMD) Process," Energies, MDPI, vol. 13(11), pages 1-16, June.
    12. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    13. Wang, Qingmiao & Qin, Yi & Jia, Feifei & Li, Yanmei & Song, Shaoxian, 2021. "Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation," Renewable Energy, Elsevier, vol. 163(C), pages 146-153.
    14. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    16. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    17. Elminshawy, Nabil A.S. & Gadalla, Mamdouh A. & Bassyouni, M. & El-Nahhas, Kamal & Elminshawy, Ahmed & Elhenawy, Y., 2020. "A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water," Renewable Energy, Elsevier, vol. 162(C), pages 802-817.
    18. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    20. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04299-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.