IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v252y2019ic78.html
   My bibliography  Save this article

Primary energy and exergy of desalination technologies in a power-water cogeneration scheme

Author

Listed:
  • Altmann, Thomas
  • Robert, Justin
  • Bouma, Andrew
  • Swaminathan, Jaichander
  • Lienhard, John H.

Abstract

The primary energy consumption of a spectrum of desalination systems is assessed using operating information and technical bids for real plants configured with coproduction of electricity. The energy efficiency of desalination plants is often rated on a stand-alone basis using metrics such as specific energy consumption, gained output ratio, and second law efficiency, which can lead to inconsistent conclusions because the heat and electrical work inputs to the plant have very different exergies and costs, which must be taken into account. When both the heat and work inputs are drawn from a common primary energy source, such as the fuel provided to electricity-water coproduction systems, these inputs can be compared and combined if they are traced back to primary energy use. In the present study, we compare 48 different configurations of electricity production and desalination on the basis of primary energy use, including cases with pretreatment and hybridized systems, using performance figures from real and quoted desalination systems operating in the GCC region. The results show that, while reverse osmosis is still the most energy efficient desalination technology, the gap between work and thermally driven desalination technologies is reduced when considered on the basis of primary energy. The results also show that pretreatment with nanofiltration or hybridization of multiple desalination systems can help to reduce energy requirements. Additionally, the specific type of power plant in the coproduction scheme and its operating parameters can have a significant impact on the performance of desalination technologies relative to one other.

Suggested Citation

  • Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:252:y:2019:i:c:78
    DOI: 10.1016/j.apenergy.2019.113319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    2. Li, Shuang-Fei & Liu, Zhen-Hua & Shao, Zhi-Xiong & Xiao, Hong-shen & Xia, Ning, 2018. "Performance study on a passive solar seawater desalination system using multi-effect heat recovery," Applied Energy, Elsevier, vol. 213(C), pages 343-352.
    3. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    4. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    5. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    6. Sharaf Eldean, Mohamed A. & Soliman, A.M., 2017. "A novel study of using oil refinery plants waste gases for thermal desalination and electric power generation: Energy, exergy & cost evaluations," Applied Energy, Elsevier, vol. 195(C), pages 453-477.
    7. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    8. Amjad, Muhammad & Gardy, Jabbar & Hassanpour, Ali & Wen, Dongsheng, 2018. "Novel draw solution for forward osmosis based solar desalination," Applied Energy, Elsevier, vol. 230(C), pages 220-231.
    9. Sayyaadi, Hoseyn & Saffari, Arash, 2010. "Thermoeconomic optimization of multi effect distillation desalination systems," Applied Energy, Elsevier, vol. 87(4), pages 1122-1133, April.
    10. Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadegh Modarresi, M. & Abada, Bilal & Sivaranjani, S. & Xie, Le & Chellam, Shankararaman, 2020. "Planning of survivable nano-grids through jointly optimized water and electricity: The case of Colonias at the Texas-Mexico border," Applied Energy, Elsevier, vol. 278(C).
    2. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    3. Obida Zeitoun & Jamel Orfi & Salah Ud-Din Khan & Hany Al-Ansary, 2023. "Desalinated Water Costs from Steam, Combined, and Nuclear Cogeneration Plants Using Power and Heat Allocation Methods," Energies, MDPI, vol. 16(6), pages 1-28, March.
    4. Bouma, Andrew T. & Wei, Quantum J. & Parsons, John E. & Buongiorno, Jacopo & Lienhard, John H., 2022. "Energy and water without carbon: Integrated desalination and nuclear power at Diablo Canyon," Applied Energy, Elsevier, vol. 323(C).
    5. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    6. Amiralipour, M. & Kouhikamali, R., 2020. "Guilan combined power plant in Iran: As case study for feasibility investigation of converting the combined power plant into water and power unit," Energy, Elsevier, vol. 201(C).
    7. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    8. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    9. Marco Gambini & Stefano Mazzoni & Michela Vellini, 2023. "The Role of Cogeneration in the Electrification Pathways towards Decarbonization," Energies, MDPI, vol. 16(15), pages 1-23, July.
    10. Soukane, Sofiane & Son, Hyuk Soo & Mustakeem, Mustakeem & Obaid, M. & Alpatova, Alla & Qamar, Adnan & Jin, Yong & Ghaffour, Noreddine, 2022. "Materials for energy conversion in membrane distillation localized heating: Review, analysis and future perspectives of a paradigm shift," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    2. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Praveen Kumar, G. & Ayou, Dereje S. & Narendran, C. & Saravanan, R. & Maiya, M.P. & Coronas, Alberto, 2023. "Renewable heat powered polygeneration system based on an advanced absorption cycle for rural communities," Energy, Elsevier, vol. 262(PA).
    4. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    5. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    6. Hekmatshoar, Maziyar & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad & Dadpour, Daryoush & Delpisheh, Mostafa, 2022. "Thermoeconomic analysis and optimization of a geothermal-driven multi-generation system producing power, freshwater, and hydrogen," Energy, Elsevier, vol. 247(C).
    7. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    8. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    9. Chew, Alvin Wei Ze & Law, Adrian Wing-Keung, 2018. "DRFM hybrid model to optimize energy performance of pre-treatment depth filters in desalination facilities," Applied Energy, Elsevier, vol. 220(C), pages 576-597.
    10. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
    11. Xie, Guo & Sun, Licheng & Mo, Zhengyu & Liu, Hongtao & Du, Min, 2016. "Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills," Applied Energy, Elsevier, vol. 179(C), pages 972-984.
    12. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    13. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    14. Gil, Juan D. & Roca, Lidia & Zaragoza, Guillermo & Berenguel, Manuel, 2018. "A feedback control system with reference governor for a solar membrane distillation pilot facility," Renewable Energy, Elsevier, vol. 120(C), pages 536-549.
    15. Li, Qiyuan & Omar, Amr & Cha-Umpong, Withita & Liu, Qian & Li, Xiaopeng & Wen, Jianping & Wang, Yinfeng & Razmjou, Amir & Guan, Jing & Taylor, Robert A., 2020. "The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment," Applied Energy, Elsevier, vol. 276(C).
    16. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2016. "Membrane distillation model based on heat exchanger theory and configuration comparison," Applied Energy, Elsevier, vol. 184(C), pages 491-505.
    17. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    18. Tan, Yong Zen & Han, Le & Chew, Nick Guan Pin & Chow, Wai Hoong & Wang, Rong & Chew, Jia Wei, 2018. "Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling," Applied Energy, Elsevier, vol. 231(C), pages 1079-1088.
    19. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    20. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:252:y:2019:i:c:78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.