IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp534-548.html
   My bibliography  Save this article

An integrated, solar-driven membrane distillation system for water purification and energy generation

Author

Listed:
  • Li, Qiyuan
  • Beier, Lisa-Jil
  • Tan, Joel
  • Brown, Celia
  • Lian, Boyue
  • Zhong, Wenwei
  • Wang, Yuan
  • Ji, Chao
  • Dai, Pan
  • Li, Tianyu
  • Le Clech, Pierre
  • Tyagi, Himanshu
  • Liu, Xuefei
  • Leslie, Greg
  • Taylor, Robert A.

Abstract

Utilising solar thermal energy for membrane distillation desalination represents a green and sustainable solution for building environments in regions with a high correlation between water shortage and high solar irradiance. Today’s solar thermal-driven membrane distillation systems are designed with physically separated solar thermal collectors (e.g. flat plate or evacuated solar thermal collectors) and membrane distillation modules. In these systems, a thermal storage tank, a heat exchanger, and complex plumbing arrangements are required to control the heat and mass transfer between the solar collectors and the membrane distillation unit(s). Due to their high complexity and high capital/operational costs, these systems are rarely installed in buildings. To overcome these weaknesses, the present work conducts an experimental and numerical feasibility study of an integrated solar membrane distillation prototype (with the membrane distillation modules built directly into the evacuated solar tubes) for both potable water and/or thermal energy production. To the best of the authors’ knowledge, this elegant combination of an evacuated tube solar collector and a membrane distillation unit represents an innovative approach which couples two well-developed technologies into an efficient, yet relatively low cost, hybrid energy-water production system.

Suggested Citation

  • Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:534-548
    DOI: 10.1016/j.apenergy.2018.12.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madhlopa, A. & Johnstone, C., 2009. "Numerical study of a passive solar still with separate condenser," Renewable Energy, Elsevier, vol. 34(7), pages 1668-1677.
    2. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2017. "Performance evaluation of a solar-driven adsorption desalination-cooling system," Energy, Elsevier, vol. 128(C), pages 196-207.
    3. Gadhamshetty, Venkataramana & Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany, 2014. "Thermal energy storage system for energy conservation and water desalination in power plants," Energy, Elsevier, vol. 66(C), pages 938-949.
    4. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    5. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Wang, Xinzhi & He, Yurong & Liu, Xing & Cheng, Gong & Zhu, Jiaqi, 2017. "Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes," Applied Energy, Elsevier, vol. 195(C), pages 414-425.
    8. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    9. Baghbanzadeh, Mohammadali & Rana, Dipak & Lan, Christopher Q. & Matsuura, Takeshi, 2017. "Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage," Applied Energy, Elsevier, vol. 187(C), pages 910-928.
    10. Zaragoza, G. & Ruiz-Aguirre, A. & Guillén-Burrieza, E., 2014. "Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production," Applied Energy, Elsevier, vol. 130(C), pages 491-499.
    11. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    12. Rosegrant, Mark W. & Cai, Ximing & Cline, Sarah A., 2002. "Global water outlook to 2025," Food policy reports 14, International Food Policy Research Institute (IFPRI).
    13. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    14. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    15. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    16. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
    17. Qiu, Shoufeng & Ruth, Matthias & Ghosh, Sanchari, 2015. "Evacuated tube collectors: A notable driver behind the solar water heater industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 580-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qingmiao & Qin, Yi & Jia, Feifei & Li, Yanmei & Song, Shaoxian, 2021. "Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation," Renewable Energy, Elsevier, vol. 163(C), pages 146-153.
    2. Gil, Juan D. & Mendes, Paulo R.C. & Camponogara, E. & Roca, Lidia & Álvarez, J.D. & Normey-Rico, Julio E., 2020. "A general optimal operating strategy for commercial membrane distillation facilities," Renewable Energy, Elsevier, vol. 156(C), pages 220-234.
    3. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Elminshawy, Nabil A.S. & Gadalla, Mamdouh A. & Bassyouni, M. & El-Nahhas, Kamal & Elminshawy, Ahmed & Elhenawy, Y., 2020. "A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water," Renewable Energy, Elsevier, vol. 162(C), pages 802-817.
    6. Li, Qiyuan & Omar, Amr & Cha-Umpong, Withita & Liu, Qian & Li, Xiaopeng & Wen, Jianping & Wang, Yinfeng & Razmjou, Amir & Guan, Jing & Taylor, Robert A., 2020. "The potential of hollow fiber vacuum multi-effect membrane distillation for brine treatment," Applied Energy, Elsevier, vol. 276(C).
    7. Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    8. Ahmed T. Okasha & Fahad Ghallab Al-Amri & Taher Maatallah & Nagmeldeen A. M. Hassanain & Abdullah Khalid Alghamdi & Richu Zachariah, 2022. "Numerical Study of Single-Layer and Stacked Minichannel-Based Heat Sinks Using Different Truncating Ratios for Cooling High Concentration Photovoltaic Systems," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    9. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    10. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    11. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    12. Adnan Alhathal Alanezi & Mohammad Reza Safaei & Marjan Goodarzi & Yasser Elhenawy, 2020. "The Effect of Inclination Angle and Reynolds Number on the Performance of a Direct Contact Membrane Distillation (DCMD) Process," Energies, MDPI, vol. 13(11), pages 1-16, June.
    13. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    14. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    2. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    3. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    5. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    6. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
    7. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    9. Swaminathan, Jaichander & Chung, Hyung Won & Warsinger, David M. & Lienhard V, John H., 2018. "Energy efficiency of membrane distillation up to high salinity: Evaluating critical system size and optimal membrane thickness," Applied Energy, Elsevier, vol. 211(C), pages 715-734.
    10. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    11. Huq, Mashiul & Ahmed, Sakib, 2018. "Prospects of incorporation of nanoparticles in molten salt for water purification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2814-2819.
    12. Vering, Christian & Göbel, Stephan & Klebig, Tim & Will, Florian & Horst, Janik & Wüllhorst, Fabian & Nürenberg, Markus & Mehrfeld, Philipp & Müller, Dirk, 2024. "Towards a defossilized building sector with field tests in the lab: Review, development, and evaluation," Applied Energy, Elsevier, vol. 365(C).
    13. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
    14. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.
    15. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Zhao, Yanan & Li, Mingliang & Long, Rui & Liu, Zhichun & Liu, Wei, 2021. "Dynamic modeling and analysis of an advanced adsorption-based osmotic heat engines to harvest solar energy," Renewable Energy, Elsevier, vol. 175(C), pages 638-649.
    17. Asfahan, Hafiz M. & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed A. & Shahzad, Muhammad W. & Worek, William, 2022. "Recent development in adsorption desalination: A state of the art review," Applied Energy, Elsevier, vol. 328(C).
    18. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:534-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.