IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10350-d460301.html
   My bibliography  Save this article

Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery

Author

Listed:
  • Muhammad Bin Nisar

    (Member of Research & Innovation, Bridge-Academy of Research, and Innovation (BARI), Islamabad 44000, Pakistan
    Science Group, Beaconhouse School System, Bosan Road Campus, Multan 60000, Pakistan)

  • Syyed Adnan Raheel Shah

    (Member of Research & Innovation, Bridge-Academy of Research, and Innovation (BARI), Islamabad 44000, Pakistan
    Department of Civil Engineering, Pakistan Institute of Engineering and Technology, Southern Bypass, Multan 60000, Pakistan)

  • Muhammad Owais Tariq

    (Member of Research & Innovation, Bridge-Academy of Research, and Innovation (BARI), Islamabad 44000, Pakistan
    Department of Electrical Engineering, Pakistan Institute of Engineering and Technology, Southern Bypass, Multan 60000, Pakistan)

  • Muhammad Waseem

    (Bayreuth Centre for Ecology and Environmental Research, University of Bayreuth, 95440 Bayreuth, Germany)

Abstract

The global demand for drinking water is increasing day by day. Different methods are used for desalination of water, which can help in the conservation of resources, such as seawater, highly saline, or treated water underground reservoirs. Polluted water can be treated by the utilization of different advanced techniques. In this study, wastewater mixed canal water has been taken into consideration for the utilization of humans and agriculture use as well. A two-stage conceptual methodology has been proposed to deal with the water conservation and utilization process. In the first phase, power has been produced using a Belgian vortex turbine, which is a safe, efficient, and eco-friendly technology working without disturbing waterways. The power produced by the vortex machine will be utilized to operate the water treatment plant to obtain clean water for utilization in the second phase. Since enough energy is produced, and its availability to the water head level base is a natural resource, this energy can be used to fulfill daily water requirements by maximizing the energy-driven treatment process as per WHO Guidelines. Water quality can be monitored at regular intervals, depending upon the selection and installation of a treatment plant. An increase in efficiency comes from nearly exponential patterns depending on water velocity and availability. This technique will not only help in the production of clean water but will also help in the conservation of groundwater resources and the efficient utilization of wastewater.

Suggested Citation

  • Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10350-:d:460301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qiyuan & Beier, Lisa-Jil & Tan, Joel & Brown, Celia & Lian, Boyue & Zhong, Wenwei & Wang, Yuan & Ji, Chao & Dai, Pan & Li, Tianyu & Le Clech, Pierre & Tyagi, Himanshu & Liu, Xuefei & Leslie, Greg , 2019. "An integrated, solar-driven membrane distillation system for water purification and energy generation," Applied Energy, Elsevier, vol. 237(C), pages 534-548.
    2. Ehsan Pourmand & Najmeh Mahjouri & Maryam Hosseini & Farzaneh Nik-Hemmat, 2020. "A Multi-Criteria Group Decision Making Methodology Using Interval Type-2 Fuzzy Sets: Application to Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4067-4092, October.
    3. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    4. Akimoto, Hiromichi & Tanaka, Kenji & Uzawa, Kiyoshi, 2013. "A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents," Renewable Energy, Elsevier, vol. 57(C), pages 283-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayman M. Dohdoh & Ibrahim Hendy & Martina Zelenakova & Ahmed Abdo, 2021. "Domestic Wastewater Treatment: A Comparison between an Integrated Hybrid UASB-IFAS System and a Conventional UASB-AS System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Sigrid Kusch-Brandt & Mohammad A. T. Alsheyab, 2021. "Wastewater Refinery: Producing Multiple Valuable Outputs from Wastewater," J, MDPI, vol. 4(1), pages 1-11, February.
    3. Marzena Smol & Dariusz Włóka, 2022. "Use of Natural Sorbents in the Processes of Removing Biogenic Compounds from the Aquatic Environment," Sustainability, MDPI, vol. 14(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    2. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    3. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    4. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    5. Bozorgi, A. & Javidpour, E. & Riasi, A. & Nourbakhsh, A., 2013. "Numerical and experimental study of using axial pump as turbine in Pico hydropower plants," Renewable Energy, Elsevier, vol. 53(C), pages 258-264.
    6. Bansal, Pradeep & Marshall, Nick, 2010. "Feasibility of hydraulic power recovery from waste energy in bio-gas scrubbing processes," Applied Energy, Elsevier, vol. 87(3), pages 1048-1053, March.
    7. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    8. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    9. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    10. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    11. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    14. Adnan Alhathal Alanezi & Mohammad Reza Safaei & Marjan Goodarzi & Yasser Elhenawy, 2020. "The Effect of Inclination Angle and Reynolds Number on the Performance of a Direct Contact Membrane Distillation (DCMD) Process," Energies, MDPI, vol. 13(11), pages 1-16, June.
    15. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2020. "Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays," Applied Energy, Elsevier, vol. 261(C).
    16. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    17. Silvio Barbarelli & Vincenzo Pisano & Mario Amelio, 2022. "Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes," Energies, MDPI, vol. 15(7), pages 1-28, April.
    18. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    19. Wang, Qingmiao & Qin, Yi & Jia, Feifei & Li, Yanmei & Song, Shaoxian, 2021. "Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation," Renewable Energy, Elsevier, vol. 163(C), pages 146-153.
    20. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10350-:d:460301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.