IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp437-450.html
   My bibliography  Save this article

Variable speed operation of centrifugal pumps running as turbines. Experimental investigation

Author

Listed:
  • Delgado, J.
  • Ferreira, J.P.
  • Covas, D.I.C.
  • Avellan, F.

Abstract

Pumps running as turbines are pointed out as a cost-effective solution for energy recovery in pressurised water supply systems. However, these hydraulic machines feature low efficiency under variable discharge operation due to the lack of an inlet flow control component. Variable speed operation is an approach for controlling the discharge at the pump as turbine inlet aiming at increasing the operational efficiency. This research work presents the experimental investigation for measuring the variable speed characteristic curves of pumps running as turbines, focusing on the turbine and on the extended operation modes. Three single-stage end-suction closed-impeller centrifugal pumps with different unit specific speed values are tested. Turbine mode test results show that the discharge-specific energy operating range is broadened with increasing efficiency if the machines are operated with variable speed. Extended operation results show that these hydraulic machines do not feature the instability region near the runaway conditions, the so-called the “s-curve”. Outcomes of this experimental investigation provide the required insights for establishing the design technical specifications of micro hydropower plants with variable speed pumps running as turbines, aiming at maximizing the energy recovered in pressurised water supply systems.

Suggested Citation

  • Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:437-450
    DOI: 10.1016/j.renene.2019.04.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vagnoni, E. & Andolfatto, L. & Richard, S. & Münch-Alligné, C. & Avellan, F., 2018. "Hydraulic performance evaluation of a micro-turbine with counter rotating runners by experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 126(C), pages 943-953.
    2. Kucukali, Serhat, 2010. "Municipal water supply dams as a source of small hydropower in Turkey," Renewable Energy, Elsevier, vol. 35(9), pages 2001-2007.
    3. Adhau, S.P. & Moharil, R.M. & Adhau, P.G., 2012. "Mini-hydro power generation on existing irrigation projects: Case study of Indian sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4785-4795.
    4. Kramer, Matthias & Terheiden, Kristina & Wieprecht, Silke, 2015. "Optimized design of impulse turbines in the micro-hydro sector concerning air detrainment processes," Energy, Elsevier, vol. 93(P2), pages 2604-2613.
    5. Ma, Tao & Yang, Hongxing & Guo, Xiaodong & Lou, Chengzhi & Shen, Zhicheng & Chen, Jian & Du, Jiyun, 2018. "Development of inline hydroelectric generation system from municipal water pipelines," Energy, Elsevier, vol. 144(C), pages 535-548.
    6. Kramer, M. & Terheiden, K. & Wieprecht, S., 2018. "Pumps as turbines for efficient energy recovery in water supply networks," Renewable Energy, Elsevier, vol. 122(C), pages 17-25.
    7. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    8. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    9. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    10. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    11. Gallagher, J. & Harris, I.M. & Packwood, A.J. & McNabola, A. & Williams, A.P., 2015. "A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints," Renewable Energy, Elsevier, vol. 81(C), pages 808-815.
    12. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
    13. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    14. Samora, Irene & Hasmatuchi, Vlad & Münch-Alligné, Cécile & Franca, Mário J. & Schleiss, Anton J. & Ramos, Helena M., 2016. "Experimental characterization of a five blade tubular propeller turbine for pipe inline installation," Renewable Energy, Elsevier, vol. 95(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    2. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    3. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    4. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    5. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    6. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    7. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    8. Leguizamón, Sebastián & Avellan, François, 2020. "Computational parametric analysis of the design of cross-flow turbines under constraints," Renewable Energy, Elsevier, vol. 159(C), pages 300-311.
    9. Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
    10. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    11. Frank A Plua & Francisco-Javier Sánchez-Romero & Victor Hidalgo & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "New Expressions to Apply the Variation Operation Strategy in Engineering Tools Using Pumps Working as Turbines," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    12. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    13. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    14. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    2. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    3. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    5. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    6. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    7. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    8. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    9. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2023. "Studying the impact of impeller geometrical parameters on the high-efficiency working range of pump as turbine (PAT) installed in the water distribution network," Renewable Energy, Elsevier, vol. 216(C).
    11. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    12. Ávila, Carlos Andrés Macías & Sánchez-Romero, Francisco-Javier & López-Jiménez, P. Amparo & Pérez-Sánchez, Modesto, 2021. "Optimization tool to improve the management of the leakages and recovered energy in irrigation water systems," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    14. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    15. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    16. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    17. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    18. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    19. Frank A Plua & Francisco-Javier Sánchez-Romero & Victor Hidalgo & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "New Expressions to Apply the Variation Operation Strategy in Engineering Tools Using Pumps Working as Turbines," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    20. Daniel Biner & Vlad Hasmatuchi & Laurent Rapillard & Samuel Chevailler & François Avellan & Cécile Münch-Alligné, 2021. "DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks," Sustainability, MDPI, vol. 13(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:437-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.