IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp44-59.html
   My bibliography  Save this article

Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study

Author

Listed:
  • Payambarpour, S. Abdolkarim
  • Najafi, Amir F.
  • Magagnato, Franco

Abstract

In this research, a 3D (three dimensional) modified in-pipe hydro Savonius turbine with a deflector is studied experimentally and numerically. The new Savonius turbine has two blades, consisting of a large number of semicircles with different diameters and its axis is perpendicular to the flow direction. The turbine and a deflector are constructed 3D printing, and then tested in a laboratory rig in several operating conditions. The same conditions as in the experiments are simulated numerically. The validity of numerical results is proved by comparison with experimental results. Hence, numerical simulation is developed to investigate the effects of deflector and turbine geometry. Moreover, a theoretical consideration to evaluate output power is provided. In this study, the deflector geometry is defined by two parameters: blockage coefficient, and angle, which with turbine aspect ratio are considered as three variable parameters. The effect of changing these three parameters on the flow rate, output torque, and turbine efficiency is determined and described graphically using 3D streamlines and pressure contours. The results indicate a positive effect of increasing turbine height. However, the increase in deflector parameters is positive only up to a certain amount and beyond it that has an adverse effect on turbine performance.

Suggested Citation

  • Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:44-59
    DOI: 10.1016/j.renene.2019.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shimokawa, Kai & Furukawa, Akinori & Okuma, Kusuo & Matsushita, Daisuke & Watanabe, Satoshi, 2012. "Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization," Renewable Energy, Elsevier, vol. 41(C), pages 376-382.
    2. Alexander, K.V. & Giddens, E.P., 2008. "Microhydro: Cost-effective, modular systems for low heads," Renewable Energy, Elsevier, vol. 33(6), pages 1379-1391.
    3. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    4. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    5. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Axial-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(1), pages 35-47.
    6. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    7. Ma, Tao & Yang, Hongxing & Guo, Xiaodong & Lou, Chengzhi & Shen, Zhicheng & Chen, Jian & Du, Jiyun, 2018. "Development of inline hydroelectric generation system from municipal water pipelines," Energy, Elsevier, vol. 144(C), pages 535-548.
    8. Alexander, K.V. & Giddens, E.P., 2008. "Optimum penstocks for low head microhydro schemes," Renewable Energy, Elsevier, vol. 33(3), pages 507-519.
    9. Quaranta, E. & Revelli, R., 2016. "Optimization of breastshot water wheels performance using different inflow configurations," Renewable Energy, Elsevier, vol. 97(C), pages 243-251.
    10. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    11. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    12. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena Ramos, 2012. "Energy Production in Water Distribution Networks: A PAT Design Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3947-3959, October.
    14. Oreste Fecarotta & Costanza Aricò & Armando Carravetta & Riccardo Martino & Helena Ramos, 2015. "Hydropower Potential in Water Distribution Networks: Pressure Control by PATs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 699-714, February.
    15. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    16. Williams, A.A., 1996. "Pumps as turbines for low cost micro hydro power," Renewable Energy, Elsevier, vol. 9(1), pages 1227-1234.
    17. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Radial- and mixed-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(7), pages 1885-1894.
    18. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    19. Saha, U.K. & Rajkumar, M. Jaya, 2006. "On the performance analysis of Savonius rotor with twisted blades," Renewable Energy, Elsevier, vol. 31(11), pages 1776-1788.
    20. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    21. Samora, Irene & Hasmatuchi, Vlad & Münch-Alligné, Cécile & Franca, Mário J. & Schleiss, Anton J. & Ramos, Helena M., 2016. "Experimental characterization of a five blade tubular propeller turbine for pipe inline installation," Renewable Energy, Elsevier, vol. 95(C), pages 356-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huixiang Chen & Kan Kan & Haolan Wang & Maxime Binama & Yuan Zheng & Hui Xu, 2021. "Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    2. Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Kisi, Ozgur, 2023. "Performance evaluation of the savonius hydrokinetic turbine using soft computing techniques," Renewable Energy, Elsevier, vol. 215(C).
    3. Chen, Yunrui & Guo, Penghua & Zhang, Dayu & Chai, Kaixin & Zhao, Chenxi & Li, Jingyin, 2022. "Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method," Renewable Energy, Elsevier, vol. 193(C), pages 832-842.
    4. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    2. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    3. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    4. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    5. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    6. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Maaloul, Makram & Abid, Mohamed Salah, 2016. "Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel," Energy, Elsevier, vol. 113(C), pages 894-908.
    7. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    8. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    9. Kumar, Dinesh & Sarkar, Shibayan, 2016. "Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis," Energy, Elsevier, vol. 116(P1), pages 609-618.
    10. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    11. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    12. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    13. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    14. Driss, Zied & Mlayeh, Olfa & Driss, Slah & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2015. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors," Energy, Elsevier, vol. 89(C), pages 708-729.
    15. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    16. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    17. Fernandes, Antonio Carlos & Bakhshandeh Rostami, Ali, 2015. "Hydrokinetic energy harvesting by an innovative vertical axis current turbine," Renewable Energy, Elsevier, vol. 81(C), pages 694-706.
    18. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Jalal, M. Rajali, 2015. "Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels," Renewable Energy, Elsevier, vol. 83(C), pages 809-819.
    20. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:44-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.