IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp633-650.html
   My bibliography  Save this article

Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool

Author

Listed:
  • Kucukali, Serhat
  • Al Bayatı, Omar
  • Maraş, H. Hakan

Abstract

This paper enables a screening of existing irrigation dams in order to assess and rank potential sites for small hydropower development by using a Geographic Information System (GIS)-fuzzy logic multi-criteria scoring technique. The following criteria are evaluated: dam characteristics (reservoir normal level, reservoir capacity, dam purpose, dam ageing), and grid connection spatial characteristics. The proposed method estimates the suitability degree of each criterion separately and then aggregates them into a Site Suitability Index (SSI). Existing irrigation dams in Turkey are assessed in order to be utilized for hydropower development. The overall score of each candidate site is obtained and, their performance is compared for different strategies. One of the most suitable dams, Karadere, was chosen as a case study. By using the daily continuous monitored data, we showed that flow and head is highly variable during the irrigation season. Accordingly, we evaluated an innovative compact medium-head hydro turbine that can capture those fluctuations with its operational flexibility and minimal civil works. Moreover, an optimal path methodology was applied to find the best grid connection route from the dam to its nearest substation considering the site land use characteristics in order to minimize land expropriation.

Suggested Citation

  • Kucukali, Serhat & Al Bayatı, Omar & Maraş, H. Hakan, 2021. "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, Elsevier, vol. 172(C), pages 633-650.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:633-650
    DOI: 10.1016/j.renene.2021.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kucukali, Serhat & Baris, Kemal, 2010. "Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach," Energy Policy, Elsevier, vol. 38(5), pages 2438-2445, May.
    2. Kucukali, Serhat, 2010. "Municipal water supply dams as a source of small hydropower in Turkey," Renewable Energy, Elsevier, vol. 35(9), pages 2001-2007.
    3. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    4. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    5. Kucukali, Serhat, 2010. "Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam," Energy Policy, Elsevier, vol. 38(11), pages 6534-6539, November.
    6. Bousquet, Cécile & Samora, Irene & Manso, Pedro & Rossi, Luca & Heller, Philippe & Schleiss, Anton J., 2017. "Assessment of hydropower potential in wastewater systems and application to Switzerland," Renewable Energy, Elsevier, vol. 113(C), pages 64-73.
    7. Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
    8. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    9. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection," Renewable Energy, Elsevier, vol. 147(P1), pages 1728-1738.
    10. Fitzgerald, Niall & Lacal Arántegui, Roberto & McKeogh, Eamon & Leahy, Paul, 2012. "A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes," Energy, Elsevier, vol. 41(1), pages 483-490.
    11. Gallagher, J. & Harris, I.M. & Packwood, A.J. & McNabola, A. & Williams, A.P., 2015. "A strategic assessment of micro-hydropower in the UK and Irish water industry: Identifying technical and economic constraints," Renewable Energy, Elsevier, vol. 81(C), pages 808-815.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    3. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    4. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    5. Delgado, J. & Ferreira, J.P. & Covas, D.I.C. & Avellan, F., 2019. "Variable speed operation of centrifugal pumps running as turbines. Experimental investigation," Renewable Energy, Elsevier, vol. 142(C), pages 437-450.
    6. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    8. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Estimating regional potential for micro-hydropower energy recovery in irrigation networks on a large geographical scale," Renewable Energy, Elsevier, vol. 155(C), pages 396-406.
    9. Helena M. Ramos & Jorge G. Morillo & Juan A. Rodríguez Diaz & Armando Carravetta & Aonghus McNabola, 2021. "Sustainable Water-Energy Nexus towards Developing Countries’ Water Sector Efficiency," Energies, MDPI, vol. 14(12), pages 1-18, June.
    10. Kemi Adeyeye & John Gallagher & Aonghus McNabola & Helena M. Ramos & Paul Coughlan, 2021. "Socio-Technical Viability Framework for Micro Hydropower in Group Water-Energy Schemes," Energies, MDPI, vol. 14(14), pages 1-21, July.
    11. Petras Punys & Linas Jurevičius, 2022. "Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania," Energies, MDPI, vol. 15(14), pages 1-23, July.
    12. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    14. Rossi, Mosè & Spedaletti, Samuele & Lorenzetti, Matteo & Salvi, Danilo & Renzi, Massimiliano & Comodi, Gabriele & Caresana, Flavio & Pelagalli, Leonardo, 2021. "A methodology to estimate average flow rates in Water Supply Systems (WSSs) for energy recovery purposes through hydropower solutions," Renewable Energy, Elsevier, vol. 180(C), pages 1101-1113.
    15. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    16. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    17. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    18. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    19. Paweł Tomczyk & Krzysztof Mastalerek & Mirosław Wiatkowski & Alban Kuriqi & Jakub Jurasz, 2023. "Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant," Energies, MDPI, vol. 16(20), pages 1-19, October.
    20. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:633-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.