IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp283-288.html
   My bibliography  Save this article

A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents

Author

Listed:
  • Akimoto, Hiromichi
  • Tanaka, Kenji
  • Uzawa, Kiyoshi

Abstract

The cost of utilizing kinetic energy of river stream, tidal and ocean current is considered to be higher than that of wind power generation because of difficulties in construction and maintenance of devices installed in seawater. As a solution to the problem, the authors propose a new concept of water stream turbine. The main idea is in the manner of supporting turbine. Although it is similar to a vertical axis turbine, the direction of turbine axis is not firmly fixed and its tilt angle is passively adjustable to the stream velocity. Since it does not have to keep the turbine axis in upright position, required structural strength and weight of the device will be reduced significantly. This paper describes the application ranging from the small hydro power in river streams to large application of tidal and ocean current turbine. In the large capacity plant for tidal stream and ocean current, the main mechanism of turbine axis support is the same as that of the wind turbine authors proposed in the previous paper. It leads to the further opportunity of cost reduction. The sample design of a multi-megawatt ocean current turbine shows the possibility of high economic performance of the concept. The results show that the cost of energy in the concept can be comparable to a land based wind turbine.

Suggested Citation

  • Akimoto, Hiromichi & Tanaka, Kenji & Uzawa, Kiyoshi, 2013. "A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents," Renewable Energy, Elsevier, vol. 57(C), pages 283-288.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:283-288
    DOI: 10.1016/j.renene.2013.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    2. Yutaka Hara & Naoki Horita & Shigeo Yoshida & Hiromichi Akimoto & Takahiro Sumi, 2019. "Numerical Analysis of Effects of Arms with Different Cross-Sections on Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 12(11), pages 1-24, June.
    3. Shirasawa, Katsutoshi & Tokunaga, Kohei & Iwashita, Hidetsugu & Shintake, Tsumoru, 2016. "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents," Renewable Energy, Elsevier, vol. 91(C), pages 189-195.
    4. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    5. Kirinus, Eduardo de Paula & Oleinik, Phelype Haron & Costi, Juliana & Marques, Wiliam Correa, 2018. "Long-term simulations for ocean energy off the Brazilian coast," Energy, Elsevier, vol. 163(C), pages 364-382.
    6. Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    7. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    8. Behrouzi, Fatemeh & Nakisa, Mehdi & Maimun, Adi & Ahmed, Yasser M., 2016. "Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1270-1281.
    9. Tsao, Che-Chih & Feng, An-Hsuan & Hsieh, Chieh & Fan, Kang-Hsien, 2017. "Marine current power with Cross-stream Active Mooring: Part I," Renewable Energy, Elsevier, vol. 109(C), pages 144-154.
    10. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Akimoto, Hiromichi & Tanaka, Kenji & Kim, Yong Yook, 2015. "Drag-type cross-flow water turbine for capturing energy from the orbital fluid motion in ocean wave," Renewable Energy, Elsevier, vol. 76(C), pages 196-203.
    12. Tsao, Che-Chih & Chen, Zhi-Xiang & Feng, An-Hsuan & Baharudin, Agus, 2023. "Study of concentrated anchoring, siting, system layout and preliminary cost analysis for a large scale Kuroshio power plant by the cross-stream active mooring," Renewable Energy, Elsevier, vol. 205(C), pages 66-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    2. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    3. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    4. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    5. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    6. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    7. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2015. "Blade loading on tidal turbines for uniform unsteady flow," Renewable Energy, Elsevier, vol. 77(C), pages 338-350.
    8. Domenech, John & Eveleigh, Timothy & Tanju, Bereket, 2018. "Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 723-730.
    9. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    10. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    11. Urbina, Raul & Peterson, Michael L. & Kimball, Richard W. & deBree, Geoffrey S. & Cameron, Matthew P., 2013. "Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model," Renewable Energy, Elsevier, vol. 50(C), pages 662-669.
    12. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    13. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    14. Ma, Penglei & Yang, Zhihong & Wang, Yong & Liu, Haibin & Xie, Yudong, 2017. "Energy extraction and hydrodynamic behavior analysis by an oscillating hydrofoil device," Renewable Energy, Elsevier, vol. 113(C), pages 648-659.
    15. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    16. Sun, Ke & Ji, Renwei & Zhang, Jianhua & Li, Yan & Wang, Bin, 2021. "Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 169(C), pages 752-764.
    17. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    18. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    19. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    20. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:283-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.