IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220307635.html
   My bibliography  Save this article

Guilan combined power plant in Iran: As case study for feasibility investigation of converting the combined power plant into water and power unit

Author

Listed:
  • Amiralipour, M.
  • Kouhikamali, R.

Abstract

This study aims to find a cost effective solution for converting an existing combined power plant into a CWP system including the membrane and thermal desalination units. Without applying major structural change in power plant, to supply fresh water, the steam lines extracted from heat recovery steam generator are used in the thermal desalination unit and membrane desalination system is connected to the gas turbine. An investigation is performed on the produced water and performance of power plant associated with different conditions of electricity and water demands. Also, the influence of steam corresponding to the low and high enthalpy conditions on the performance of thermal desalination unit and power plant is explored. Furthermore, in view of the production capacity of electricity associated with the gas units and consumption demands of various seasons, the influence of membrane desalination unit on the water production is illustrated. An economic investigation is performed to estimate the selling price of water in each unit. It is concluded that in the thermal unit, using HP line produces about 25,000 m3/day, while the LP line causes up to 7000 m3/day water.

Suggested Citation

  • Amiralipour, M. & Kouhikamali, R., 2020. "Guilan combined power plant in Iran: As case study for feasibility investigation of converting the combined power plant into water and power unit," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307635
    DOI: 10.1016/j.energy.2020.117656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You, Huailiang & Han, Jitian & Liu, Yang, 2019. "Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling," Energy, Elsevier, vol. 185(C), pages 286-298.
    2. Beyrami, Javid & Chitsaz, Ata & Parham, Kiyan & Arild, Øystein, 2019. "Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm," Energy, Elsevier, vol. 186(C).
    3. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    4. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2023. "Optimization and analysis of combined heat and water production system based on a coal-fired power plant," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chen & Wang, Yinglong & Chen, Guanghui & Li, Quan & Gu, Xinchun & Li, Xin & Wang, Yuguang & Zhu, Zhaoyou & Li, Jianlong, 2022. "Thermodynamic analysis and process optimization of organosilicon distillation systems," Energy, Elsevier, vol. 252(C).
    2. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    3. Obida Zeitoun & Jamel Orfi & Salah Ud-Din Khan & Hany Al-Ansary, 2023. "Desalinated Water Costs from Steam, Combined, and Nuclear Cogeneration Plants Using Power and Heat Allocation Methods," Energies, MDPI, vol. 16(6), pages 1-28, March.
    4. M. Ehyaei & M. Kasaeian & Stéphane Abanades & Armin Razmjoo & Hamed Afshari & Marc Rosen & Biplab Das, 2023. "Natural gas‐fueled multigeneration for reducing environmental effects of brine and increasing product diversity: Thermodynamic and economic analyses," Post-Print hal-04113893, HAL.
    5. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    6. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    7. Tian, Cong & Su, Chang & Yang, Chao & Wei, Xiwen & Pang, Peng & Xu, Jianguo, 2023. "Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle," Energy, Elsevier, vol. 264(C).
    8. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    9. Ariana M. Pietrasanta & Sergio F. Mussati & Pio A. Aguirre & Tatiana Morosuk & Miguel C. Mussati, 2022. "Optimization of Cogeneration Power-Desalination Plants," Energies, MDPI, vol. 15(22), pages 1-22, November.
    10. Mousavi, Shadi Bashiri & Ahmadi, Pouria & Adib, Mahdieh & Izadi, Ali, 2023. "Techno-economic assessment of an efficient liquid air energy storage with ejector refrigeration cycle for peak shaving of renewable energies," Renewable Energy, Elsevier, vol. 214(C), pages 96-113.
    11. Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2023. "Optimization and analysis of combined heat and water production system based on a coal-fired power plant," Energy, Elsevier, vol. 262(PB).
    12. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    13. Marco Gambini & Stefano Mazzoni & Michela Vellini, 2023. "The Role of Cogeneration in the Electrification Pathways towards Decarbonization," Energies, MDPI, vol. 16(15), pages 1-23, July.
    14. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.
    15. Naminezhad, Alireza & Mehregan, Mahmood, 2022. "Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems," Renewable Energy, Elsevier, vol. 185(C), pages 888-903.
    16. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    17. Saleh, Amin & Hajabdollahi, Hassan & Ghamari, Vahid & Shafiey Dehaj, Mohammad, 2023. "Evaluation of operational strategy of cooling and thermal energy storage tanks in optimal design of multi generation system," Energy, Elsevier, vol. 284(C).
    18. Mahmoudi, S.M. Seyed & Akbari, A.D. & Rosen, Marc A., 2022. "A novel combination of absorption heat transformer and refrigeration for cogenerating cooling and distilled water: Thermoeconomic optimization," Renewable Energy, Elsevier, vol. 194(C), pages 978-996.
    19. Bouma, Andrew T. & Wei, Quantum J. & Parsons, John E. & Buongiorno, Jacopo & Lienhard, John H., 2022. "Energy and water without carbon: Integrated desalination and nuclear power at Diablo Canyon," Applied Energy, Elsevier, vol. 323(C).
    20. Manassaldi, Juan I. & Mussati, Miguel C. & Scenna, Nicolás J. & Morosuk, Tatiana & Mussati, Sergio F., 2021. "Process optimization and revamping of combined-cycle heat and power plants integrated with thermal desalination processes," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.