IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029583.html
   My bibliography  Save this article

An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing

Author

Listed:
  • Giampieri, A.
  • Ma, Z.
  • Ling-Chin, J.
  • Roskilly, A.P.
  • Smallbone, A.J.

Abstract

The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).

Suggested Citation

  • Giampieri, A. & Ma, Z. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2022. "An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029583
    DOI: 10.1016/j.energy.2021.122709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    2. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    3. Koichi Kawamoto & Wanghee Cho & Hitoshi Kohno & Makoto Koganei & Ryozo Ooka & Shinsuke Kato, 2016. "Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump," Energies, MDPI, vol. 9(2), pages 1-22, January.
    4. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    5. Giampieri, Alessandro & Ma, Zhiwei & Ling Chin, Janie & Smallbone, Andrew & Lyons, Padraig & Khan, Imad & Hemphill, Stephen & Roskilly, Anthony Paul, 2019. "Techno-economic analysis of the thermal energy saving options for high-voltage direct current interconnectors," Applied Energy, Elsevier, vol. 247(C), pages 60-77.
    6. Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    2. Daghigh, Roonak & Arshad, Siamand Azizi & Ensafjoee, Koosha & Hajialigol, Najmeh, 2024. "A data-driven model for a liquid desiccant regenerator equipped with an evacuated tube solar collector: Random forest regression, support vector regression and artificial neural network," Energy, Elsevier, vol. 295(C).
    3. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
    2. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    3. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    4. Giampieri, A. & Roy, S. & Shivaprasad, K.V. & Smallbone, A.J. & Roskilly, A.P., 2022. "An integrated smart thermo-chemical energy network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    8. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    9. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    10. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    11. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    13. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    14. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    15. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    16. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    17. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    18. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    19. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    20. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.