IDEAS home Printed from
   My bibliography  Save this article

Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples


  • Zhao, X.B.
  • Tang, G.H.
  • Ma, X.W.
  • Jin, Y.
  • Tao, W.Q.


To improve heat transfer performance and reduce erosion of economizers in coal-fired power plants, firstly the heat transfer and erosion characteristics is numerically studied for the single H-type finned oval tube with enhanced heat transfer structures including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. The simulation results show that the oval tube with compound LVG-dimple achieves the highest overall heat transfer performance while the oval tube with LVG works most efficiently in the anti-wear performance. Then based on the H-type finned oval tube, the LVG structure on the first row of tubes together with hemisphere protrusions design, while the compound LVG-dimple on the rest tubes are also simulated. The optimized H-type finned oval tube bank heat exchanger is demonstrated of high performance on both heat transfer and anti-wear.

Suggested Citation

  • Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
  • Handle: RePEc:eee:appene:v:127:y:2014:i:c:p:93-104
    DOI: 10.1016/j.apenergy.2014.04.033

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yakut, Kenan & Sahin, Bayram & Celik, Cafer & Alemdaroglu, Nihal & Kurnuc, Aslihan, 2005. "Effects of tapes with double-sided delta-winglets on heat and vortex characteristics," Applied Energy, Elsevier, vol. 80(1), pages 77-95, January.
    2. Chen, Hongxia & Xu, Jinliang & Li, Zijin & Xing, Feng & Xie, Jian, 2013. "Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface," Applied Energy, Elsevier, vol. 112(C), pages 1283-1290.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Luo, Lei & Wen, Fengbo & Wang, Lei & Sundén, Bengt & Wang, Songtao, 2016. "Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger," Applied Energy, Elsevier, vol. 183(C), pages 1317-1332.
    2. Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, Open Access Journal, vol. 12(4), pages 1-16, February.
    3. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    4. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    6. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-45, October.
    7. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    8. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    9. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    10. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:127:y:2014:i:c:p:93-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.