IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1717-d1623665.html
   My bibliography  Save this article

Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators

Author

Listed:
  • Lin Liu

    (Jiangsu Key Laboratory of Green Process Equipment, School of Mechanical Engineering and Rail Transit, Changzhou University, No. 21 Ge Hu Middle Road, Changzhou 213164, China)

  • Zhichun Ni

    (Jiangsu Key Laboratory of Green Process Equipment, School of Mechanical Engineering and Rail Transit, Changzhou University, No. 21 Ge Hu Middle Road, Changzhou 213164, China)

  • Haoyuan Tang

    (Jiangsu Key Laboratory of Green Process Equipment, School of Mechanical Engineering and Rail Transit, Changzhou University, No. 21 Ge Hu Middle Road, Changzhou 213164, China)

  • Hui Xu

    (Jiangsu Key Laboratory of Green Process Equipment, School of Mechanical Engineering and Rail Transit, Changzhou University, No. 21 Ge Hu Middle Road, Changzhou 213164, China)

  • Bingyun Jiang

    (Wanbang Digital Energy Co., Ltd., No. 39 Long Hui Road, Changzhou 213000, China)

Abstract

The thermal-hydraulic performance of circular heat transfer tubes equipped with isosceles trapezoidal winglet longitudinal vortex generators (ITWL-VGs) was investigated through integrated experimental and numerical approaches. Experimental studies were conducted that focused on the effects of key parameters: (1) the ITW quantity ( n = 4, 6, 8); (2) the attack angle (α = 0°, 15°, 30°, 45°); and (3) four distinct VG arrangements. Numerical simulations employing multi-physical field analysis elucidated the underlying heat transfer enhancement mechanisms. The numerical simulations demonstrated excellent agreement with the experimental measurements. The results indicated that uniformly distributed ITWL-VGs with suitable angles of attack (α) significantly enhanced the thermal performance. Increasing the number of ITWs ( N ) generated additional longitudinal vortices, intensifying fluid mixing and heat transfer enhancement, thereby improving the PEC value. All the Nusselt number ( Nu ), friction factor ( f ) and PEC values exhibited positive correlations with the α and the spacing ( L P ), respectively. Within the scope of this study, the α should not be less than 30°. In addition, an optimal value should be used for the L P . The maximum PEC value was 1.27. These findings conclusively demonstrated the significant heat transfer enhancement capabilities of ITWL-VGs.

Suggested Citation

  • Lin Liu & Zhichun Ni & Haoyuan Tang & Hui Xu & Bingyun Jiang, 2025. "Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators," Energies, MDPI, vol. 18(7), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1717-:d:1623665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Wenbing & Du, Lei & Wei, Huafei & Sun, Helin, 2024. "The influence of urban new energy development orientation on new energy technology innovation in firms," Renewable Energy, Elsevier, vol. 237(PD).
    2. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    3. Yakut, Kenan & Sahin, Bayram & Celik, Cafer & Alemdaroglu, Nihal & Kurnuc, Aslihan, 2005. "Effects of tapes with double-sided delta-winglets on heat and vortex characteristics," Applied Energy, Elsevier, vol. 80(1), pages 77-95, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahin, Bayram & Yakut, Kenan & Kotcioglu, Isak & Celik, Cafer, 2005. "Optimum design parameters of a heat exchanger," Applied Energy, Elsevier, vol. 82(1), pages 90-106, September.
    2. Yakut, Kenan & Alemdaroglu, Nihal & Sahin, Bayram & Celik, Cafer, 2006. "Optimum design-parameters of a heat exchanger having hexagonal fins," Applied Energy, Elsevier, vol. 83(2), pages 82-98, February.
    3. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    4. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    5. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Kumar, Raj & Kumar, Anil & Chauhan, Ranchan & Maithani, Rajesh, 2018. "Comparative study of effect of various blockage arrangements on thermal hydraulic performance in a roughened air passage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 447-463.
    7. Ahmed, H.E. & Mohammed, H.A. & Yusoff, M.Z., 2012. "An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5951-5993.
    8. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    9. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    10. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    11. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    12. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1717-:d:1623665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.