IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4942-d1491300.html
   My bibliography  Save this article

A Technological Update on Heat Pumps for Industrial Applications

Author

Listed:
  • Sergio Bobbo

    (Construction Technologies Institute, National Research Council (CNR ITC), Corso Stati Uniti 4, 35127 Padova, Italy)

  • Giulia Lombardo

    (Construction Technologies Institute, National Research Council (CNR ITC), Corso Stati Uniti 4, 35127 Padova, Italy
    Dipartimento di Ingegneria Industriale, Università di Padova, Via Venezia 1, 35131 Padova, Italy)

  • Davide Menegazzo

    (Construction Technologies Institute, National Research Council (CNR ITC), Corso Stati Uniti 4, 35127 Padova, Italy)

  • Laura Vallese

    (Construction Technologies Institute, National Research Council (CNR ITC), Corso Stati Uniti 4, 35127 Padova, Italy
    Dipartimento di Ingegneria Industriale, Università di Padova, Via Venezia 1, 35131 Padova, Italy)

  • Laura Fedele

    (Construction Technologies Institute, National Research Council (CNR ITC), Corso Stati Uniti 4, 35127 Padova, Italy)

Abstract

It is now widely confirmed by scientific evidence that greenhouse gas emissions must be reduced to counteract the effects of global warming. The production of heat for industrial purposes is responsible for 36.8% of world energy-related emissions due to the widespread use of fossil fuels. Heat pumps are a key technology in the transition towards more sustainable industrial processes. In this paper, a systematic review of the literature produced in the last 5 years in international journals regarding the integration of heat pumps in industrial processes is presented. Firstly, papers presenting innovative configurations for high temperature heat pumps (HTHP), i.e., heat pumps delivering temperatures in the range between 100 °C and 200 °C, suitable for many industrial processes but still under development, are reviewed. Then, papers reporting innovative solutions for the integration of heat pumps in specific industrial processes and sectors (e.g., distillation, drying, desalination, etc.) are analyzed. Finally, the literature about alternative low-GWP refrigerants for industrial heat pumps, both pure compounds and mixtures, is described. It is concluded that many progresses have been realized in the last 5 years (2020–2024) regarding the identification of innovative heat pumps for industrial applications, but further research is certainly required.

Suggested Citation

  • Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4942-:d:1491300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    2. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    3. Yang, Deming & Wan, Dehao & Yun, Yi & Yang, Shuzhuang, 2023. "Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology," Energy, Elsevier, vol. 262(PB).
    4. Zhang, L.Z. & Jiang, L. & Xu, Z.C. & Zhang, X.J. & Fan, Y.B. & Adnouni, M. & Zhang, C.B., 2022. "Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology," Renewable Energy, Elsevier, vol. 198(C), pages 1267-1278.
    5. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z., 2020. "Experimental investigation on the performance of a very high temperature heat pump with water refrigerant," Energy, Elsevier, vol. 190(C).
    6. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    7. Wu, Zhicong & Xu, Gang & Zhang, Wentao & Xue, Xiaojun & Chen, Heng, 2023. "Thermodynamic and economic analysis of a new methanol steam reforming system integrated with CO2 heat pump and cryogenic separation system," Energy, Elsevier, vol. 283(C).
    8. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    9. Chen, Longxiang & Liu, Xi & Ye, Kai & Xie, Meina & Lan, Wenchao, 2023. "Thermodynamic and economic analysis of an integration system of multi-effect desalination (MED) with ice storage based on a heat pump," Energy, Elsevier, vol. 283(C).
    10. Vering, Christian & Kroppa, Hendrik & Venzik, Valerius & Streblow, Rita & Müller, Dirk, 2022. "Towards an integral decision-making process applied to the refrigerant selection in heat pumps," Renewable Energy, Elsevier, vol. 192(C), pages 815-827.
    11. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    12. Hamid, Khalid & Sajjad, Uzair & Yang, Kai Shing & Wu, Shih-Kuo & Wang, Chi-Chuan, 2022. "Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling," Energy, Elsevier, vol. 238(PB).
    13. Anton Beck & Julian Unterluggauer & Franz Helminger & Irene Solís-Gallego, 2023. "Decarbonisation Pathways for the Finishing Line in a Steel Plant and Their Implications for Heat Recovery Measures," Energies, MDPI, vol. 16(2), pages 1-21, January.
    14. Foslie, Sverre Stefanussen & Knudsen, Brage Rugstad & Korpås, Magnus, 2023. "Integrated design and operational optimization of energy systems in dairies," Energy, Elsevier, vol. 281(C).
    15. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    16. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Ge, Tianshu & Liu, Hua & Zhang, Zhiping & Zhou, Yu, 2023. "Experiments of advanced centrifugal heat pump with supply temperature up to 100 °C using low-GWP refrigerant R1233zd(E)," Energy, Elsevier, vol. 263(PD).
    17. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2024. "Improving plant-level heat pump performance through process modifications," Applied Energy, Elsevier, vol. 358(C).
    18. Spale, Jan & Hoess, Andreas J. & Bell, Ian H. & Ziviani, Davide, 2024. "Exploratory study on low-GWP working fluid mixtures for industrial high temperature heat pump with 200 °C supply temperature," Energy, Elsevier, vol. 308(C).
    19. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    20. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ruzhu & Yan, Hongzhi & Wu, Di & Jiang, Jiatong & Dong, Yixiu, 2024. "High temperature heat pumps for industrial heating processes using water as refrigerant," Energy, Elsevier, vol. 313(C).
    2. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Hemin Hu & Tao Wang & Fan Zhang & Bing Zhang & Jian Qi, 2024. "Matching Characteristics of Refrigerant and Operating Parameters in Large Temperature Variation Heat Pump," Energies, MDPI, vol. 17(14), pages 1-24, July.
    4. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    5. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    6. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Liu, Hua & Zhang, Zhiping & Wu, Yongqiang & Yue, Qingxue & Zhang, Ying, 2024. "Film condensation experiments of R1233zd(E) over horizontal tubes and high-temperature condensation predictions for high-temperature heat pump," Energy, Elsevier, vol. 300(C).
    7. Guan, Xiaokang & Wang, Yunfeng & Li, Ming & Li, Aimin & Zhou, Xiaoyan & Yang, Jie & Liang, Zhongwei, 2025. "Research on the performance of heat pump drying system with rock thermal energy storage," Energy, Elsevier, vol. 316(C).
    8. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.
    10. Wei, Junzhuo & Wu, Di & Wang, Ruzhu, 2025. "A Multi-Objective evolutionary algorithm-based optimization framework for hybrid absorption-compression heat pump systems," Applied Energy, Elsevier, vol. 382(C).
    11. Jiang, Jiatong & Hu, Bin & Ge, Tianshu & Wang, R.Z., 2022. "Comprehensive selection and assessment methodology of compression heat pump system," Energy, Elsevier, vol. 241(C).
    12. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
    13. Wu, Di & Wei, Junzhuo & Wang, R.Z., 2025. "Performance investigation of a new hybrid high-temperature heat PUMP with natural water medium," Energy, Elsevier, vol. 314(C).
    14. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    15. Wu, Di & Hu, Bin & Wang, R.Z. & Fan, Haibin & Wang, Rujin, 2020. "The performance comparison of high temperature heat pump among R718 and other refrigerants," Renewable Energy, Elsevier, vol. 154(C), pages 715-722.
    16. Andersen, Martin Pihl & Zühlsdorf, Benjamin & Markussen, Wiebke Brix & Jensen, Jonas Kjær & Elmegaard, Brian, 2024. "Selection of working fluids and heat pump cycles at high temperatures: Creating a concise technology portfolio," Applied Energy, Elsevier, vol. 376(PB).
    17. Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
    18. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    19. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    20. Jiang, Jiatong & Zhou, Yu & Ji, Fan & Wu, Di & Hu, Bin & Liu, Hua & Wang, RuZhu, 2024. "Internal thermal management cooling strategies for high-temperature heat pump," Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4942-:d:1491300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.