IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3685-d1700410.html
   My bibliography  Save this article

Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems

Author

Listed:
  • Stanislav Boldyryev

    (Faculty of Mechanical Engineering and Naval Architecture, The University of Zagreb, 10000 Zagreb, Croatia)

  • Oleksandr S. Ivashchuk

    (Department of Chemical Engineering, Lviv Polytechnic National University, 79000 Lviv, Ukraine)

  • Goran Krajačić

    (Faculty of Mechanical Engineering and Naval Architecture, The University of Zagreb, 10000 Zagreb, Croatia)

  • Volodymyr M. Atamanyuk

    (Department of Chemical Engineering, Lviv Polytechnic National University, 79000 Lviv, Ukraine)

Abstract

Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations.

Suggested Citation

  • Stanislav Boldyryev & Oleksandr S. Ivashchuk & Goran Krajačić & Volodymyr M. Atamanyuk, 2025. "Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems," Energies, MDPI, vol. 18(14), pages 1-34, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3685-:d:1700410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Tang, Ziran & Liu, Yuqing & Zhang, Leilei & Gu, Huimin & Liao, Yuxuan, 2023. "Natural resources, cleaner electricity production and economic performance," Resources Policy, Elsevier, vol. 86(PB).
    5. Lopes, Rui Amaral & Silva, Francisco & Menezes-Barros, Rafael & Amaro, Nuno & Carvalho, Ana Gonçalves de & Martins, João, 2025. "Exploring energy flexibility from smart electrical water heaters to improve electrification benefits in residential buildings: Findings from real-world operation," Energy, Elsevier, vol. 316(C).
    6. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    7. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
    8. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    9. Zhong, Qiumeng & Zhang, Zhihe & Wang, Heming & Zhang, Xu & Wang, Yao & Wang, Peng & Ma, Fengmei & Yue, Qiang & Du, Tao & Chen, Wei-Qiang & Liang, Sai, 2023. "Incorporating scarcity into footprints reveals diverse supply chain hotspots for global fossil fuel management," Applied Energy, Elsevier, vol. 349(C).
    10. Zhai, Xiangyu & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Wang, Peng & Sun, Hongbin, 2025. "Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach," Applied Energy, Elsevier, vol. 383(C).
    11. Stanislav Boldyryev & Mariia Ilchenko & Goran Krajačić, 2024. "Improving the Economic Efficiency of Heat Pump Integration into Distillation Columns of Process Plants Applying Different Pressures of Evaporators and Condensers," Energies, MDPI, vol. 17(4), pages 1-31, February.
    12. Chin, Hon Huin & Varbanov, Petar Sabev & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Martincová, Jana Victoria, 2024. "Blockchain-based concept for total site heat integration: A pinch-based smart contract energy management in industrial symbiosis," Energy, Elsevier, vol. 305(C).
    13. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    14. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    15. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    16. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    17. Daniels, Laura & Coker, Phil & Potter, Ben, 2016. "Embodied carbon dioxide of network assets in a decarbonised electricity grid," Applied Energy, Elsevier, vol. 180(C), pages 142-154.
    18. Zhang, Mingming & Guo, Qianxi & Liu, Liyun & Zhou, Dequn, 2025. "Renewable energy investment under the market-oriented transition of policies," Energy Policy, Elsevier, vol. 204(C).
    19. Nidret Ibrić & Chao Fu & Truls Gundersen, 2024. "Simultaneous Optimization of Work and Heat Exchange Networks," Energies, MDPI, vol. 17(7), pages 1-35, April.
    20. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    21. Kim, Jin-Kuk, 2022. "Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    22. Walden, Jasper V.M. & Wellig, Beat & Stathopoulos, Panagiotis, 2023. "Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting," Applied Energy, Elsevier, vol. 352(C).
    23. Er, Hong An & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2022. "Simultaneous retrofit of direct and indirect Heat Exchanger Storage Network (HESN) via individual batch process stream mapping," Energy, Elsevier, vol. 261(PA).
    24. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    25. Christelle Bou Malham & Assaad Zoughaib & Rodrigo Rivera Tinoco & Thierry Schuhler, 2019. "Hybrid Optimization Methodology (Exergy/Pinch) and Application on a Simple Process," Energies, MDPI, vol. 12(17), pages 1-34, August.
    26. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    27. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
    28. Knorr, L. & Buchenau, N. & Schlosser, F. & Divkovic, D. & Prina, M.G. & Meschede, H., 2025. "Electrification and flexibility of process heat in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    29. Palander, Teijo, 2011. "Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels," Energy, Elsevier, vol. 36(10), pages 5984-5993.
    30. Yang, Zekun & Pan, Ting & Chang, Chenglin & Zhang, Shuhao & Zhang, Nan & Smith, Robin, 2025. "Multi-objective-period heat exchanger network synthesis and decarbonization for industrial-scale crude oil distillation system," Energy, Elsevier, vol. 326(C).
    31. Fleiter, Tobias & Rehfeldt, Matthias & Neusel, Lisa & Hirzel, Simon & Neuwirth, Marius & Schwotzer, Christian & Kaiser, Felix & Gondorf, Carsten, 2024. "CO₂-neutral process heat using electrification and hydrogen: Technologies, barriers and required action [CO₂-neutrale Prozesswärme durch Elektrifizierung und Einsatz von Wasserstoff. Technologien, ," Perspectives – Policy Briefs 01 / 2024, Fraunhofer Institute for Systems and Innovation Research (ISI).
    32. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    33. Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
    34. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    35. Razzaq, Asif & Sharif, Arshian & Yang, Xiaodong & Dogan, Eyup, 2024. "Influence mechanism of electricity price distortion on industrial green transformation: A spatial analysis of Chinese regions," Energy Economics, Elsevier, vol. 130(C).
    36. Timothy Gordon Walmsley & Benjamin James Lincoln & Roger Padullés & Donald John Cleland, 2024. "Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques," Energies, MDPI, vol. 17(12), pages 1-18, June.
    37. Chu, Zheng & Zhang, Nan & Smith, Robin, 2022. "Modelling and integration of multi-parallel organic Rankine Cycles into total site," Energy, Elsevier, vol. 260(C).
    38. Ulyev, Leonid & Boldyryev, Stanislav & Kuznetsov, Maxim, 2023. "Investigation of process stream systems for targeting energy-capital trade-offs of a heat recovery network," Energy, Elsevier, vol. 263(PD).
    39. Raphael Agner & Peter Gruber & Beat Wellig, 2024. "Model Predictive Control of Heat Pumps with Thermal Energy Storages in Industrial Processes," Energies, MDPI, vol. 17(19), pages 1-24, September.
    40. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    41. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2020. "Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables," Applied Energy, Elsevier, vol. 262(C).
    42. Padullés, Roger & Walmsley, Timothy Gordon & Lincoln, Benjamin James & Andersen, Martin Pihl & Jensen, Jonas Kjær & Elmegaard, Brian, 2024. "Process integration and electrification through multiple heat pumps using a Lorenz efficiency approach," Energy, Elsevier, vol. 311(C).
    43. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2010. "Gas-fired power plants: Investment timing, operating flexibility and CO2 capture," Energy Economics, Elsevier, vol. 32(4), pages 805-816, July.
    44. Sorknæs, Peter & Johannsen, Rasmus M. & Korberg, Andrei D. & Nielsen, Tore B. & Petersen, Uni R. & Mathiesen, Brian V., 2022. "Electrification of the industrial sector in 100% renewable energy scenarios," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padullés, Roger & Walmsley, Timothy Gordon & Lincoln, Benjamin James & Andersen, Martin Pihl & Jensen, Jonas Kjær & Elmegaard, Brian, 2024. "Process integration and electrification through multiple heat pumps using a Lorenz efficiency approach," Energy, Elsevier, vol. 311(C).
    2. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    3. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    4. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Zhi, Keke & Wang, Bohong & Guo, Lianghui & Chen, Yujie & Li, Wei & Ocłoń, Paweł & Wang, Jin & Chen, Yuping & Tao, Hengcong & Li, Xinze & Varbanov, Petar Sabev, 2024. "Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process," Energy, Elsevier, vol. 299(C).
    6. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Yuan, Tiejiang & Mao, Yaling, 2024. "A review of pinch analysis techniques and extended application in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    8. Knorr, L. & Buchenau, N. & Schlosser, F. & Divkovic, D. & Prina, M.G. & Meschede, H., 2025. "Electrification and flexibility of process heat in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    9. Yang, Xiaolin & Kong, Ying & Zhou, Yu & Liu, Dawei & Xia, Jianjun, 2024. "Case study on combined heat and water system for district heating in Beijing through recovery of industrial waste heat in Tangshan," Energy, Elsevier, vol. 300(C).
    10. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).
    11. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    12. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    13. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    14. Möhren, S. & Meyer, J. & Krause, H. & Saars, L., 2021. "A multiperiod approach for waste heat and renewable energy integration of industrial sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    16. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    17. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    18. Groppi, Daniele & Pastore, Lorenzo Mario & Nastasi, Benedetto & Prina, Matteo Giacomo & Astiaso Garcia, Davide & de Santoli, Livio, 2025. "Energy modelling challenges for the full decarbonisation of hard-to-abate sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    19. Wang, Fei & Li, Panfeng & Gai, Limei & Chen, Yujie & Zhu, Baikang & Chen, Xianlei & Tao, Hengcong & Varbanov, Petar Sabev & Sher, Farooq & Wang, Bohong, 2024. "Enhancing the efficiency of power generation through the utilisation of LNG cold energy by a dual-fluid condensation rankine cycle system," Energy, Elsevier, vol. 305(C).
    20. Luca Viscito & Francesco Pelella & Andrea Rega & Federico Magnea & Gerardo Maria Mauro & Alessandro Zanella & Alfonso William Mauro & Nicola Bianco, 2025. "Physical Model for the Simulation of an Air Handling Unit Employed in an Automotive Production Process: Calibration Procedure and Potential Energy Saving," Energies, MDPI, vol. 18(7), pages 1-25, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3685-:d:1700410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.