IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i4p805-816.html
   My bibliography  Save this article

Gas-fired power plants: Investment timing, operating flexibility and CO2 capture

Author

Listed:
  • Fleten, Stein-Erik
  • Näsäkkälä, Erkka

Abstract

We analyze investments in gas-fired power plants based on stochastic electricity and natural gas prices. A simple but realistic two-factor model is used for price processes, enabling analysis of the value of operating flexibility, the opportunity to abandon the capital equipment, as well as finding thresholds for energy prices for which it is optimal to enter into the investment. We develop a method to compute upper and lower bounds on plant values and investment threshold levels. Our case study uses representative power plant investment and operations data, and historical forward prices from well-functioning energy markets. We find that when the decision to build is considered, the abandonment option does not have significant value, whereas the operating flexibility and time-to-build option have significant effect on the building threshold. Furthermore, the joint value of the operating flexibility and the abandonment option is much smaller than the sum of their separate values, because both are options to shut down. The effects of emission costs on the value of installing CO2 capture technology are also analyzed.

Suggested Citation

  • Fleten, Stein-Erik & Näsäkkälä, Erkka, 2010. "Gas-fired power plants: Investment timing, operating flexibility and CO2 capture," Energy Economics, Elsevier, vol. 32(4), pages 805-816, July.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:4:p:805-816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00138-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abadie, Luis M. & Chamorro, José M., 2008. "Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant," Energy Economics, Elsevier, vol. 30(4), pages 1850-1881, July.
    2. Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
    3. Denny Ellerman, 1998. "Note on The Seemingly Indefinite Extension of Power Plant Lives, A Panel Contribution," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Majd, Saman & Pindyck, Robert S., 1987. "Time to build, option value, and investment decisions," Journal of Financial Economics, Elsevier, vol. 18(1), pages 7-27, March.
    5. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    6. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, Oxford University Press, vol. 101(4), pages 707-727.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    8. Nasakkala, Erkka & Fleten, Stein-Erik, 2005. "Flexibility and technology choice in gas fired power plant investments," Review of Financial Economics, Elsevier, vol. 14(3-4), pages 371-393.
    9. Fama, Eugene F & French, Kenneth R, 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums,and the Theory of Storage," The Journal of Business, University of Chicago Press, vol. 60(1), pages 55-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    2. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    3. Rohlfs, Wilko & Madlener, Reinhard, 2010. "Valuation of CCS-Ready Coal-Fired Power Plants: A Multi-Dimensional Real Options Approach," FCN Working Papers 7/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Fernandes, Bartolomeu & Cunha, Jorge & Ferreira, Paula, 2011. "The use of real options approach in energy sector investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4491-4497.
    5. repec:eee:eneeco:v:63:y:2017:i:c:p:1-12 is not listed on IDEAS
    6. GAHUNGU, Joachim & SMEERS, Yves, 2011. "A real options model for electricity capacity expansion," CORE Discussion Papers 2011044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. repec:eee:eneeco:v:70:y:2018:i:c:p:453-464 is not listed on IDEAS
    8. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Janne Kettunen, Derek W. Bunn and William Blyth & Derek W. Bunn & William Blyth, 2011. "Investment Propensities under Carbon Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-118.
    10. Charalampous, Georgios & Madlener, Reinhard, 2013. "Risk Management and Portfolio Optimization for Gas- and Coal-fired Power Plants in Germany: A Multivariate GARCH Approach," FCN Working Papers 23/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    11. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    12. Andreas Schröder & Maximilian Bracke, 2012. "Integrated Electricity Generation Expansion and Transmission Capacity Planning: An Application to the Central European Region," Discussion Papers of DIW Berlin 1250, DIW Berlin, German Institute for Economic Research.
    13. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    14. repec:eee:eneeco:v:70:y:2018:i:c:p:132-142 is not listed on IDEAS
    15. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    16. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    17. Kang, Sang Baum & Létourneau, Pascal, 2016. "Investors’ reaction to the government credibility problem: A real option analysis of emission permit policy risk," Energy Economics, Elsevier, vol. 54(C), pages 96-107.
    18. Narita, Daiju & Klepper, Gernot, 2015. "Economic incentives for carbon dioxide storage under uncertainty: A real options analysis," Kiel Working Papers 2002, Kiel Institute for the World Economy (IfW).
    19. repec:eee:ejores:v:267:y:2018:i:3:p:1039-1050 is not listed on IDEAS
    20. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," ESTUDIOS GERENCIALES, UNIVERSIDAD ICESI, November.
    21. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:4:p:805-816. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.